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A B S T R A C T

The European spruce bark beetle (Ips typographus) poses a major threat to forests, causing significant tree 
mortality and ecosystem disruption. Hyperspectral imagery from unmanned aerial vehicles (UAVs) offers po
tential for early detection of infestations, but its application remains limited. This study evaluates the effec
tiveness of a dense time series of UAV hyperspectral imagery (nine dates, May–August 2022, Krkonoše Mts. 
Czechia, 1030 m a.s.l.) at 3  cm spatial resolution for timely detection of bark beetle infestations in Norway 
spruce (Picea abies (L.) Karst.). We compared 23 infested trees (grouped into 11, 6, and 6) with 23 healthy 
controls (same grouping). Spectral separability between healthy and infested trees was assessed using Jeffries- 
Matusita distance, Analysis of Similarities, Wilcoxon rank-sum test, and Difference-in-Differences. The earliest 
detection date was June 15, ~3 weeks after estimated start of infestation, ~2 weeks after bark symptoms became 
visible, and ~2 weeks before crown discoloration appeared. To improve the timing and targeting of RS-based 
detection, we proposed subdividing the green stage into three substages: G-HS (green hidden symptoms stage, 
ca 1–10 days after start of infestation): subtle bark symptoms hidden in upper trunk, G-BS (visible bark symptom 
stage, lasts ca 3 weeks): visible bark symptoms in lower trunk, green crowns, G-YS (green-yellow stage, ca 5 
weeks after bark visible infestation): initial crown discoloration. Our findings showed that UAV-based hyper
spectral sensing can significantly enhance bark beetle detection, especially when the detection occurs within 3 
weeks after bark-visible infestation providing a critical window for timely interventions to limit outbreak spread.

1. Introduction

Forests worldwide are undergoing substantial impacts due to climate 
change (Anderegg et al., 2020; Allen et al., 2010; Lindner et al., 2010). 
Rising temperatures and altered precipitation patterns are intensifying 
droughts, wildfires, and outbreaks of pests and pathogens. Synergy of 
these factors is accelerating the global decline and degradation of forests 
(Prăvălie, 2018; Kupková et al., 2018). In Europe, nearly one-third of 
forests are currently in decline (Maes et al., 2023). This situation has 
become a major concern for public authorities, who are focused on 
preventing further deterioration, as forests provide essential ecosystem 
services such as water cycle regulation, biodiversity support, soil pro
tection, and air quality improvement Hlásny et al., 2021). They also play 
a crucial role in carbon sequestration and storage, which is vital for 
mitigating the impacts of climate change (Nahuz et al., 1990; Pretzsch 

et al., 2023).
One of the most pressing sustainability challenges for forests is their 

high vulnerability to insect outbreaks (Sikorski et al., 2023; Forzieri 
et al., 2021). While such outbreaks are a natural component of forest 
dynamics, they become alarming when severe infestations shift from 
endemic to epidemic stages, causing significant tree mortality 
(Housecroft, 2023). The extreme drought in Central Europe in 2018 
triggered some of the most severe insect outbreaks in history (Knutzen 
et al., 2023; Pirtskhalava-Karpova et al., 2024). The European spruce 
bark beetle (Ips typographus) has been the primary insect responsible for 
widespread damage to Norway spruce (Picea abies (L.) Karst.) forests 
(Sťríbrská et al., 2023). Central European countries such as Czechia, 
Germany, Slovakia, Poland and Austria are the most severely affected 
both economically and ecologically by the bark beetle (Hlásny et al., 
2021; Murray, 2006; Lausch et al., 2013). In 2022, Czechia reported the 
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extraction of over 5.6 million cubic meters of spruce wood infested by 
the bark beetle (Lubojacký et al., 2023).

Bark beetles are living under the bark, and typically favour trees over 
60 years old with a diameter at breast height exceeding 20–25 cm 
(Zimová et al., 2020; Müller et al., 2022). They usually begin swarming 
when daytime temperatures reach approximately 16.5 ◦C (Doležal and 
Sehnal, 2007; Lausch et al., 2013). The beetles can survive through 
winter and complete several generations annually (Brázdil et al., 2022; 
Hlásny et al., 2021).

Bark beetle infestation in spruce trees progresses through several 
lifecycle stages. Initially, shortly after swarming and a successful attack, 
male beetles bore into the tree and release pheromones to attract fe
males. This stage, known as initial colonization, involves the creation of 
mating chambers and maternal galleries where eggs are laid. As at the 
beginning of infestation the adults bore into the upper parts of the trunk 
(Lubojacký et al., 2018; Kautz et al., 2024), and frass and resin ducts are 
minimal at this stage, especially if the attack is not widespread, the 
symptoms are hidden and hard to detect. Consequently, no visible 
symptoms are typically present on the lower parts of the trunk at this 
stage. According to our experience and some studies (Wermelinger and 
Seifert, 1998; Kautz et al., 2024; Bárta et al., 2022; Berec et al., 2013; 
Webb et al., 2024, Lubojacký et al., 2018, Kautz et al., 2023), this period 
of “hidden” symptoms can range approximately few days up to 2 weeks, 
depending on environmental factors such as temperature, humidity, tree 
resistance. Given a sufficiently high beetle population density, subse
quent attacks continue downwards, resulting in a full coverage of the 
stem with galleries.

The symptoms such as boring holes, resin flow and boring dust 
become visible in the lower parts of the trees. Finally, as the infestation 
progresses, the tree’s health deteriorates further, leading to crown 
discoloration (yellowing, and later reddening of needles), which 
generally becomes visible around approx. 4–8 weeks after the initial 
attack (Bozzini et al.; 2024; Huo et al.; 2023a, Bijou et al.; 2023, 
Lubojacký et al., 2018).

The spread of infestation can rapidly cover large areas, and existing 
traditional field methods of detection (field surveys and visual in
spections) are both time-consuming and labor-intensive. Identifying 
infested trees promptly for removal in the field using traditional 
methods poses a real challenge, as they require frequent visits across 
extensive areas. Remote sensing (RS) has proven to be an efficient tool in 
spotting foliar discoloration from successful bark beetle attacks 
(Abdullah et al. 2018), ideally directing ground surveys to identify trees 
with possible symptoms of infestation (Nardi et al. 2023).

Multitemporal imagery with high spatial and spectral resolution, 
particularly hyperspectral data from UAVs or aerial imagery, offer the 
greatest potential for early detection. Although spatially detailed im
agery has become more common for GS detection, hyperspectral data 
have been used only to a limited extent. Huo et al. (2023a) used UAV 
multispectral imagery with 6 cm resolution and detected 15 % of GS- 
infected trees after 5 weeks, improving to 87 % at 10 weeks when 
crown discoloration was visible. Klouček et al. (2024) evaluated GS 
infestation with UAV multispectral data from July 29, identifying dif
ferences between healthy and infested trees using NIR-based VIs like 
NDVI and BNDVI. Bozzini et al. (2024) detected infestation one month 
before visible symptoms appeared using UAV multispectral imagery and 
indices such as NDVI, SAVI, and NDRE. Bárta et al. (2022) analyzed 
airborne hyperspectral imagery with 48 bands at 0.5 m resolution, 
detecting reflectance changes after 23 days of infestation. The most 
successful VIs included REIP, PRI, and ANCB650–720 within 6 weeks. In 
contrast, Huo et al. (2024) found low detection rates using UAV 
hyperspectral imagery at 10 cm GSD, with 0.3 % detectability after 5–7 
weeks and 0.8 % at 7–9 weeks.

RS methods for detecting bark beetle infestation include vegetation 
indices (VIs), spectral band analysis, statistical techniques, and super
vised classifications. Key spectral bands like the red-edge (Hellwig et al., 
2021) and shortwave infrared (Huo et al., 2021; Abdullah et al., 2018) 

are effective for distinguishing healthy from infested trees. The red band 
is also frequently used (Huo et al., 2021; Bijou et al., 2023). NIR (Near- 
Infrared) bands are less effective for early detection (Bijou et al., 2023; 
Klouček et al., 2019), except in lab studies (Abdullah et al., 2018). 
Sentinel-2 with red-edge and water-related indices outperformed 
Landsat 8 for identifying green stage trees in the study of Abdullah et al. 
(2018). NIR-based indices such as NDVI (Klouček et al., 2024) and EVI/ 
VARI (Trubin et al., 2024) also showed good results. Novel indices like 
the Multiple Ratio Disease–Water Stress (Huo et al., 2023a) and the 
NDRS (Huo et al., 2021) have been proposed, with the latter achieving 
80–82 % accuracy. Bárta et al. (2021) reported 78 % accuracy using 
TCW and NIR–SWIR, and Näsi et al. (2015) achieved 90 % accuracy for 
two-class classification with hyperspectral sensors, dropping to 76 % 
with a third class (infested).

From a management perspective, it is critical to start monitoring the 
infestation symptoms as soon as possible after a suspected attack, as this 
time is crucial for an early/timely detection and sanitary logging. Using 
the symptoms of the foliage/crown discoloration, the bark beetle 
infestation is classified into four distinct stages. Initially, spruce trees 
show no visible symptoms of infestation on foliage (Green stage – GS), 
followed by yellowing of leaves (Yellow stage – YS), indicating severe 
stress. In the Red stage (RS), trees show red leaves, signifying irreparable 
damage and a peak in bark beetle populations. Eventually, in the Grey 
stage (GRS), trees die, and their leaves turn grey and fall off (Niemann 
and Visintini, 2005).

Studies across various sensors and regions showed that the earliest 
foliar color changes of infestation (for overwintered generation) occur in 
July or August, depending on the study area, meaning the GS typically 
lasts from May to July, i.e., 4–8 weeks or more (Bozzini et al., 2024; Huo 
et al., 2023a). The new filial generation can emerge 6 to 10 weeks after 
infestation, depending on temperature and precipitation, with trees 
potentially still appearing green (Webb et al., 2024; Bárta et al., 2022; 
Kautz et al., 2023). Early detection is crucial for forest management, 
ideally before the new generation emerges, as sanitation measures must 
be implemented before beetles spread further. Detection during the late 
GS (shortly after initial crown discoloration and before new filial 
emergence) may already be ineffective. Therefore, defining substages 
within the GS based on phenology and field symptoms is important for 
identifying the critical window when RS can still enhance management. 
Few studies have addressed these substages. Kautz et al. (2024) outlined 
two substages but omitted the yellow stage, which misrepresents 
infestation progression. Dalponte et al. (2023) identified G1 and G2 
substages but included needle and bark loss in G2, which typically oc
curs in later stages. While stage progression is continuous and influenced 
by many factors in the field, examining the GS in greater detail is still 
particularly relevant, especially in the context of RS effectiveness 
evaluation.

As evidenced in the above mentioned studies and also summarized 
by Kautz et al. (2024), some studies have detected the GS. However, they 
focus mainly on its later stage, missing the critical early window at 
infestation onset. Time series usually cover no more than five dates and 
rely on multispectral imagery across the full season, lacking the tem
poral density of early high-frequency hyperspectral data needed to 
capture initial spectral changes. Ground truth at the tree level and clear 
definitions of infestation stages are often missing. These gaps limit the 
RS applicability in detecting and preventing bark beetle outbreaks.

To address these gaps, our study employs a unique dense time series 
of UAV-based hyperspectral images with 3 cm spatial resolution, ac
quired on nine dates before and during infestation, combined with 
detailed ground truth for each date. We evaluate the effectiveness of 
these data for early detection of bark beetle infestation in Norway spruce 
(Picea abies (L.) Karst.) using Jeffries-Matusita distance, Analysis of 
Similarities, Wilcoxon rank-sum test, and Difference-in-Differences 
methods. As early detection is crucial for efficient bark beetle manage
ment and outbreak prevention, we focus on the following research 
questions: 
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1) How early within the green stage, and in which spectral region, can 
discernible differences between healthy and infested trees be first 
detected using dense time series of UAV-based hyperspectral imag
ery and the above-mentioned statistical methods?

2) What are the key milestones in the progression of a bark beetle 
infestation during the green stage that remote sensing should be able 
to detect in order to enhance bark beetle management?

3) Is the spectral detection during the green stage always timely, or can 
it already be too late in the advanced green stage when aiming to 
accelerate sanitation measures and prevent further spread of the 
infestation?

2. Materials and methods

2.1. Study area and field data collection

The research was carried out during the 2022 growing season in a 
forest stand prone to bark beetle infestation (particularly Ips typogra
phus) within the Krkonoše National Park (KRNAP), Czech Republic. 
Historically associated with forestry and mining, KRNAP, established in 
1963, is the oldest national park in the country and protects a range of 
unique mountainous ecosystems. Forests cover approximately 79 % of 
its area, dominated by Norway spruce (Picea abies), with additional 
species including mountain pine (6 %), European beech (5 %), and other 
broadleaved trees (10 %). The study site, covering an area of approxi
mately 4 ha, is a Norway spruce monoculture located near Dolní Dvůr 
(Tetřeví boudy chalet) in the Hradec Králové Region at an elevation of 
1030 m a.s.L. (Fig. 1). The site is managed by the forestry service of the 
national park, and bark beetle infestations have been present there for 
several last years.

Monitoring of the study site began on 16 May 2022 and continued 
until 25 August. Field inspections were carried out in cooperation with 
trained KRNAP foresters, who regularly visited the plot and systemati
cally assessed the bark, branches, and overall tree health to detect 
symptoms of bark beetle activity. At the start of the monitoring period 
(16 May), no infestation symptoms were observed and no trees showed 
signs of bark beetle attack. According to records provided by the for
esters, the first visible symptoms, specifically boring holes and resin flow 
on the lower parts of the tree trunks, were detected on 3 June. The 
infestation then progressed in additional waves, likely triggered by 
parental beetles from the initial swarming event, over the following 
weeks (see Fig. 2). During the entire monitoring period, a total of 36 
trees were infested. However, only 23 of these trees exhibited a clear 
progression of infestation (boring dust, color changes of foliage, defo
liation, bark loss) within the observation period and were therefore 
retained for further analysis. Among them, infestation symptoms on the 
bark were first recorded on 3 June in 11 trees (Group G1), 12 days later 
on 15 June in 6 trees (Group G2), and 21 days later on 24 June in 
another 6 trees (Group G3). A detailed description of infestation pro
gression of each group is described in chapter 3.1.

Infested trees were labelled in the field with a unique numerical 
identifier, and their exact positions were measured using a Trimble C5 
total station to enable precise mapping in UAV-derived orthomosaics. 
The change in health status of each tree was evaluated based on visible 
infestation symptoms (including bark symptoms, crown discoloration, 
defoliation, and bark loss) throughout the entire monitoring period on 
each UAV data acquisition date (altogether 9 dates – for specific dates, 
see Fig. 2 and chapter 2.2.).

To serve as a control in the analysis, 23 healthy trees were selected 
and grouped into 11, 6, and 6 trees, respectively, to match the group 

Fig. 1. Study area, including (a) Location of the Krkonoše National Park in the Czech Republic, and (b) the area of the Krkonoše National park, (c) Location of the 
forested plot where we conducted the research (Latitude = 50◦39′57.4″N, Longitude = 15◦41′36.6″E) (d) Drone picture of the forested area (e) Positions of the 
infested trees (G1, G2, G3) and healthy control trees used for the analysis (H: Healthy).
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sizes of the infested trees and allow for direct comparison. The selection 
was based on two criteria: (1) maintaining a considerable distance from 
the plots of infested trees (approximately a 15-metre buffer), and (2) 
consistently healthy crown appearance throughout the observation 
period. Additionally, their health status was confirmed through NDVI 
thresholding prior to analysis. Only sufficiently illuminated pixels with 
NDVI values exceeding 0.7 were selected for the analysis. The locations 
of these selected healthy trees are shown in Fig. 1.

2.2. Estimation of the start of infestation using thermal sum data

Since visible bark symptoms do not appear immediately after infes
tation begins (Lubojacký et al., 2018, Kautz et al., 2023), we estimated 
the most likely start of bark beetle attack/infestation by calculating 
accumulated thermal sums, expressed in degree-days (DD). Tempera
ture data were obtained from the Czech Hydrometeorological Institute 
(ČHMÚ, 2025), which maintains a long-term network of climatological 
stations with records dating back to 1961. We used data from the nearest 
station, located 5.5 km from the study site in Pec pod Sněžkou, to 
calculate daily thermal sums.

Two commonly used phenological models rely on temperature 

thresholds to estimate the start of infestation (Baier et al., 2007; Jönsson 
et al., 2007; Berec et al., 2013). These models differ in their input re
quirements, temperature metrics, and sensitivity to climatic variability. 
The Jönsson model accumulates degree-days above a base temperature 
of 5 ◦C using mean daily temperatures, starting from January 1. 
Swarming is estimated to occur when 120 cumulative degree-days (DD) 
are reached, but only if at least one day with a daily maximum tem
perature exceeding 16 ◦C is observed, reflecting the physiological 
threshold for flight activity. The PHENIPS model accumulates degree- 
days above a base temperature of 8.3 ◦C, using maximum daily tem
peratures starting on April 1, or on the first subsequent day when the 
maximum temperature exceeds this threshold. Swarming is assumed to 
begin when 60 cumulative DD are reached, but only if at least one day 
with a daily maximum temperature exceeding 16.5 ◦C.

A comparison of modeled cumulative degree-days based on the 
Jönsson and PHENIPS models for our study area is presented in Ap
pendix A. The Jönsson model estimated the start of infestation on May 
24, while the PHENIPS model on May 3. Due to the high diurnal tem
perature variation in our mountainous study area, we consider the 
Jönsson model more appropriate. Its input requirements are better 
aligned with the thermal regime of the site, making its prediction more 

Fig. 2. Progression of bark beetle infestation in the field, combined with bark beetle phenology (of the overwintered generation), and a timeline showing the 9 dates 
of UAV data acquisition and the dates when the first visible bark symptoms (bark visible infestation) appeared in tree groups G1, G2, and G3 (highlighted in red). 
Note: Bark beetle development and emergence were not modelled; the timing is only theoretical. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
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robust and ecologically plausible. Therefore, we consider the Jönsson 
model more appropriate for our study site, and May 24 as the most likely 
date of attack/infestation start.

2.3. UAV imagery collection

We gathered UAV data at nine time points between May 16 and 
August 25, 2022. The specific dates were May 16, June 3, June 8, June 
15, June 24, July 1, July 19, August 4, and August 25 (Fig. 2). Two 
flights were conducted on each date. The first flight captured hyper
spectral imagery (400–1000 nm, 269 bands) using a Headwall Nano- 
Hyperspec sensor mounted on a DJI Matrice 600 Pro. The second 
flight collected RGB and multispectral imagery (blue, green, red, red 
edge, NIR, and RGB) using a DJI Phantom 4 Multispectral RTK. The RGB 
data were analyzed in our other study (Bijou et al., 2023). We used RGB 
data to generate a digital elevation model for hyperspectral image 
orthorectification. The main parameters of the UAVs used are shown in 
Fig. 3.

We used a flight speed of 5 m/s, a flight altitude of 68.9 m, a ground 
sample distance of 3 cm, and 50 % side-overlap. The flights were con
ducted between 8 a.m. and 12 p.m. under mostly sunny weather con
ditions, with occasional fluctuations noted during specific field 
campaign dates, particularly on June 3 and June 8 due to changing 
weather conditions (partly cloudy during some phases of the overflight).

2.4. Processing workflow and experimental design

We employed important pre-processing steps (described in chapters 
2.5–2.7) and diverse methods to assess the differences in spectra be
tween the two healthy (control) and infested spruce trees (chapter 2.8). 
As the trees in groups G1, G2, and G3 were infested on clearly distinct 
dates (see chapter 2.1), we analyzed each group separately to avoid 
mixing trees at different stages of damage and to ensure consistency in 
spectral responses. Fig. 4 provides the workflow of the collected data 
preprocessing and analysis.

2.5. Pre-processing of UAV data

After completing the UAV flights, the collected hyperspectral cubes 
were subjected to standard pre-processing, including radiometric cali
bration, atmospheric correction, and geometric alignment. Geometric 
and radiometric corrections were carried out using Headwall Spectral
View software (Červená et al., 2020). Radiometric correction was based 
on factory-calibrated files and a portable 3 × 3 m fabric target (type 822, 
Group 8 Technology, Inc., Provo, UT, USA), which was placed within the 
scanned area during the flights. The calibrated tarp is divided into three 
sections, each with a known reflectance value (56 %, 32 %, and 11 %), 

and serves as the basis for the radiometric correction. We converted the 
data to radiance using the calibration files, and an average radiance 
spectrum was obtained from the tarp. The known absolute reflectance 
curves of the tarp panels were then used to scale the radiance values, 
ensuring a standardised correction process for the entire flight (Angel 
et al., 2020; Červená et al., 2020).

For geometric correction, we merged the hyperspectral cubes into 
continuous flight line sequences using GNSS/IMU data recorded during 
the flights. The digital elevation model generated from the point cloud of 
the Phantom 4 Multispectral RTK was used to orthorectify the hyper
spectral flight lines. RGB and multispectral orthomosaics, along with 
digital elevation models, were produced in Agisoft Metashape Profes
sional v1.7.2 (Agisoft LLC, St. Petersburg, Russia) from the multispectral 
imagery. More details on the RGB and multispectral pre-processing 
procedures are available in Bijou et al. (2023). Mosaicking of the 
orthorectified hyperspectral flight lines was attempted in QGIS using 
ground control points as tiepoints and the RGB orthomosaic as a refer
ence image. However, due to challenges in the forested environment, a 
complete mosaic of the study area for all dates could not be created. 
Therefore, we focused our analysis on individual flight lines.

Given the importance of radiometric stability for the analysis of 
multitemporal UAV imagery, we assessed the spectral fidelity and per
formance of the Headwall Nano-Hyperspec sensor before continuing 
with further analyses (see Appendix B). To reduce noise and smooth the 
reflectance spectra, a Savitzky-Golay filter was applied, improving the 
interpretability of the hyperspectral signal (further details in Appendix 
C).

2.6. Removal of background and delineation

To isolate the forest canopy and remove the background, for a better 
and guided manual delineation of tree crowns, each hyperspectral cube 
was classified using K-means unsupervised classification with a change 
threshold of 0.5 % and a maximum of two iterations. Increasing the 
number of iterations to eight did not improve the results. Eight clusters/ 
classes were generated, as this number provided the best separation 
between canopy (1 class) and background (7 classes). To further refine 
the resulting mask, particularly in areas where unsupervised classifica
tion struggled with background and shadowed pixels, we applied a red 
band thresholding technique (band 184) following Clark et al. (2005). 
Pixels with reflectance values higher than the mean tree reflectance in 
this band were retained to produce a binary forest mask (Dalponte et al., 
2014). Individual tree crowns were manually delineated from the 
hyperspectral cubes in ENVI 5.5, using the created mask and validated 
with coordinates of trees measured with the total station. Only well-lit 
and clearly visible portions of the crowns were selected for further 
analysis.

Fig. 3. UAV systems used for data collection over our study area, (a) The DJI Matrice 600 with Nano Hyperspec sensor and the sensor characteristics, (b) Phantom 4 
Multispectral RTK UAV system and its characteristics.
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2.7. Feature extraction

As already stated, our analysis focused on the comparison of 23 
infested trees subdivided into three groups (G1, G2, and G3) consisting 
of 11, 6, and 6 trees, respectively, and 23 healthy (control) trees (sub
divided into three groups with the same number of trees). We analysed 
hyperspectral features of both healthy and infested trees during each of 
9 sensing periods. These features included: (1) the computed average 
spectral reflectance for each band (B1–B269) within every delineated 
tree crown; (2) 25 spectral VIs (see Appendix D); and (3) first spectral 
derivatives. Derivative analysis is particularly valuable in this context 
for several reasons. It helps to highlight changes or features in the 
spectral data that may be subtle or difficult to detect in the original 
reflectance spectrum. It also sharpens spectral peaks, making it easier to 
distinguish their positions. Moreover, derivatives are less affected by 
variations in illumination conditions, which make them more robust for 
time series analysis (Einzmann et al., 2021; Campbell et al., 2004). We 
computed the first derivative for both healthy and infested trees for all 9 
dates to capture how rapidly the spectral reflectance changes between 
consecutive wavelengths. The following formula was used for the 
calculation of the first derivatives: 

dRλ(i)

dλi
=

Rλ(i+1) − Rλ(i− 1)

λi+1 − λi− 1 

where, R is the spectral reflectance at a given wavelength, dR is the change in 
reflectance between two adjacent bands. dλ is the difference in wavelength 

between those bands.

2.8. Statistical analysis of spectral separability

To evaluate the spectral separability between healthy and infested 
trees, we conducted four types of statistical analyses: Jeffries-Matusita 
(JM) distance, Analysis of Similarities (ANOSIM), Wilcoxon rank-sum 
test (WRST), and Difference-in-Differences (DiD). Table1 summarizes 
which method was applied to which type of the spectral features and 
group of infested trees. Although all statistical methods were initially 
tested across various spectral features and tree groups, we focus here on 

Fig. 4. The workflow of the study, illustrating the progression from data acquisition through preprocessing and analysis. (Vs: Versus).

Table 1 
Statistical methods used for analyzing spectral features and groups of infested 
trees for each of the infestation groups. The symbol “+” indicates that a method 
was applied, while “–” indicates that the method was not used.

Statistical method JM ANOSIM WRST DiD

Spectral features Reflectance + + + +

1st derivatives − + – –
VIs – – + +

Groups of Infested trees G1 (11 trees) + + + +

G2 (6 trees) + + + –
G3 (6 trees) + + + –

Note: JM: Jeffries Matusita distance, WRST: Wilcoxon rank-sum test, ANOSIM: 
Analysis of Similarities, DiD: Difference in Difference.
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the most relevant combinations to avoid redundancy, as raw reflectance, 
VIs, and first derivatives often share overlapping information. Due to 
sample size limitations, some analyses were only performed for group 
G1, which provided a sufficiently large sample for reliable statistical 
assessment. We used JM and WRST for relative comparisons between 
the 2 categories, healthy and infested trees, for each sensing date, and 
DiD method for multitemporal analysis of the 2 categories, leveraging 
panel data to mitigate heterogeneity and increase sample size. ANOSIM 
was used as a multivariate approach to assess spectral separability. More 
details are provided below. 

1. The Jeffries-Matusita distance (JM) is a statistical measure 
commonly employed in the context of spectral feature space in 
hyperspectral applications (Borges et al., 2007; Padma and Sanjeevi, 
2014). In RS, it is used to quantify the separability between two 
probability distributions, typically representing two different classes 
in classification problems, and is also used as a feature ranking tool in 
machine learning (Sen et al., 2019). We calculated JM between 
healthy and infested trees in particular groups (G1, G2 and G3), 
across all 269 spectral bands. A JM distance above 1.90 indicates 
greater separability between two categories, while values below 1 
suggest low distinguishability. The JM distance is asymptotic to 2, 
where 2 suggests complete separability

2. Analysis of Similarities (ANOSIM) is a non-parametric multivariate 
statistical test used to evaluate whether two or more groups differ 
significantly based on a dissimilarity matrix. It is commonly 
employed in ecological and biological research, where the input data 
represent pairwise dissimilarities between samples (e.g., between 
species) (Mcilwaine et al., 2019). The dissimilarity matrix quantifies 
the differences between all sample pairs, typically using Euclidean 
distance. ANOSIM ranks these distances and computes the R statistic, 
which quantifies the degree of separation between groups. The R 
value ranges from –1 to 1, where 1 indicates complete dissimilarity, 
0 indicates no difference, and –1 indicates complete similarity. A 
corresponding p-value is used to determine the statistical signifi
cance of the observed differences. We computed the dissimilarity 
matrix by comparing all pairwise combinations of healthy and 
infested trees based on their reflectance or first derivatives across all 
spectral bands. The analysis was performed using the “free” per
mutation type with 999 permutations. We interpreted the R statistic 
using three threshold ranges to assess the strength of category sep
aration: R < 0.3 (weak separation), 0.3 < R < 0.65 (moderate sep
aration), and R > 0.65 (strong separation). A p-value threshold of 
0.005 was applied to assess statistical significance, where p-values 
below this threshold indicated significant differences between 
categories

3. The Wilcoxon Rank-Sum test (WRST) is a non-parametric statistical 
test used to compare two independent groups when the assumption 
of normality is not met (Wilcoxon, 1945). We employed WRST 
independently for each sensing period, in order to identify spectral 
bands and VIs that significantly differed between healthy and 
infested trees (G1, G2 and G3). Prior to testing, the normality of all 
269 spectral bands and 25 VIs was assessed using the Shapiro-Wilk 
test. As the data did not meet the assumption of normality, we pro
ceeded with the nonparametric WRST. The WRST test offers several 
advantages: (1) it can be used with non-normally distributed data, 
(2) it is resistant to outliers because it relies on ranks rather than 
original measurements, (3) it is suitable for small sample sizes, (4) it 
is easy to understand and requires minimal statistical knowledge 
(Dao, 2022). Different significance thresholds were applied 
depending on the type of data. For reflectance values, which are 
more prone to variability due to sensor noise and environmental 
conditions, we used a significance level of 0.05 to allow the detection 
of meaningful differences while minimizing false negatives. For VIs, 
which are inherently smoothed and less noisy, a stricter threshold of 

0.01 was applied to reduce false positives and ensure greater confi
dence in the results

4. Difference-in-Differences (DiD) is a quasi-experimental econometric 
method used to estimate the causal effect of a treatment or inter
vention by comparing changes in outcomes over time between a 
treatment group and a control group (Angrist et al., 1999). The 
fundamental assumption is that, in the absence of treatment, the 
difference in outcomes between two groups would remain constant 
over time. By comparing the pre-treatment and post-treatment out
comes for both groups, DiD isolates the effect of the treatment, 
controlling for any underlying trends or external factors that might 
influence the outcome. This allows for a causal inference about the 
treatment’s effect. Although originally developed for use in eco
nomics, DiD has since gained traction in environmental, climate, and 
few RS studies (Fu et al., 2022; Xie et al., 2022; Wang et al., 2021)

We used DiD to assess how the bark beetle infestation (the “treat
ment”) affects the spectral reflectance in trees over time (within the 9 
sensing dates). We divided the trees into two categories: (1) treatment 
category – trees that have been infested (3rd June for G1) and (2) control 
category – healthy trees that were not infested. The data includes 
repeated measurements of reflectance for each tree at nine time points, 
for the analysis of how the spectral reflectance of the trees changed over 
time before and after the infestation occurred. We used panel data (or 
longitudinal data) which refers to observations collected from the same 
trees over multiple time points. This type of data structure combines 
cross-sectional data (observations from multiple trees, both healthy and 
infested) with time series data (repeated measurements over time). We 
monitored 11 trees, collecting data over 9 time points, which constitutes 
a panel dataset. Each observation includes: A unit (tree ID or number), a 
time point (ranging from 1 to 9), a status variable (1 = infested, 0 =
healthy), and several features (spectral bands and vegetation indices). 
Panel data structure is beneficial for this study for several reasons. First, 
it allows for examining the temporal evolution of spectral reflectance 
across 9 time points, helping to isolate the effects of bark beetle infes
tation while controlling for general time trends like seasonal changes. 
Second, panel data enables control for unobserved heterogeneity by 
accounting for individual tree characteristics that could influence 
spectral reflectance but remain constant over time. Third, it strengthens 
causal inference by using both cross-sectional and temporal variation, 
providing more accurate comparisons between treatment and control 
categories.

Since infestation (the “treatment”) occurred at different time points, 
we adopted a heterogeneous DiD framework with the Augmented In
verse Probability Weighting (AIPW) estimator (Callaway and San
t’Anna, 2021). This estimator offers double robustness, reducing 
potential bias even when some model assumptions are violated. The 
dataset consisted of 11 healthy and 11 infested trees (for G1), observed 
at 9 time points, resulting in 198 total observations (22 trees × 9 dates). 
We focused on estimating the Average Treatment Effect on the Treated 
(ATET) for each cohort and time period, represented by dates D1 
through D9. In our analysis, two cohorts were identified using a dataset 
comprising 198 observations, evenly split between the control category 
(99 observations) and the treatment category (99 observations). The 
control category includes observations coded as 0, indicating trees that 
were never treated (i.e. remained healthy), while the treatment category 
includes observations coded as 1, corresponding to trees that belong to 
one of the infested cohorts. The ATET reflects the estimated change in 
the outcome variable attributable to the treatment, relative to the con
trol group, for a given cohort and time period. Each ATET estimate is 
accompanied by its standard error, z-value, and p-value, enabling sta
tistical inference regarding the significance of the observed effects. 
Additionally, 95 % confidence intervals are reported for each ATET, 
representing the range within which the true effect is estimated to lie 
with 95 % confidence.

Comparing various methods was essential for addressing the unique 
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temporal and spectral characteristics of hyperspectral data and for cross- 
verifying results to enhance confidence in the analysis. JM, WRST and 
ANOSIM were performed using the R programming language (R Core 
Team, 2023). DiD was conducted in Stata 18 (StataCorp. 2023).

3. Results

In the main body of the paper, we present detailed results (descrip
tive and statistical), including figures, only for G1 (except for chapter 
3.1). For G2 and G3, which represent additional waves of infestation by 
parental beetles from the initial swarming event with specific develop
mental patterns and smaller sample sizes, only basic results are 
mentioned in the main body, and the corresponding outputs are pro
vided in the appendices.

3.1. Development of the bark beetle infestation in the field

The infestation development for trees in groups G1, G2, and G3 (refer 
to chapter 2.1) is illustrated in Fig. 5. Visible symptoms on the bark 
(boring holes and resin flow) first appeared on June 3 for G1 (11 trees), 
on June 15 for G2 (6 trees), and on June 24 for G3 (6 trees). Trees in G1, 
which were infested earliest, remained longer in the green and yellow 
crown stages. In contrast, G2 and G3 progressed more rapidly towards 
the yellow and red stages, with shorter durations in the green stage. By 
August 25, most infested trees across all groups exhibited complete 
crown greying, advanced defoliation, and substantial bark loss. While 
individual trees showed some variation, the described symptom pro
gression reflects the predominant pattern within each group.

3.2. Temporal changes in spectral features

3.2.1. Temporal changes in individual bands (reflectance and 1st 
derivatives)

The mean spectral signatures, depicting the spectral behavior of G1 
infested and healthy trees across multiple sensing dates, are shown in 
Fig. 6. In the early stages of infestation (up to D4), the spectral char
acteristics of both healthy and infested trees were largely similar, with 
some differences observed on June 3 (D2) and June 8 (D3), which were 
not consistent over time. A more pronounced divergence became 

evident only later, particularly on July 19 (D7), when reflectance in 
the red wavelengths noticeably increased and reflectance in the NIR 
region decreased in infested trees. At this point, however, crown damage 
was already clearly visible through standard field observation, sug
gesting that spectral detection occurred relatively late in the progres
sion. In August, these spectral trends further intensified. The mean 
spectral signatures of G2 and G3 for each date (D1 to D9) are presented 
in the Appendix E – Fig. E1. For G2, bark beetle stress became evident on 
D8 (August 4th) with a drop in NIR and a rise in visible reflectance. For 
G3, a similar shift occurred from D8, marking the onset of significant 
spectral differences.

The mean values of first derivatives showed a smooth and gradual 
progression over time (Fig. 7). Some irregular or abrupt shifts between 
the healthy and G1 of infested trees were observed on D3 in the red-edge 
region (700–750 nm), similar to patterns seen in the non-derivative 
spectra. The most distinct differences began to appear from D5 
within the same spectral range (700–750 nm), and became more 
widespread by D7, extending across nearly the entire spectrum, with 
particularly pronounced differences in the 700–750 nm and 480–570 
nm regions, indicative of developing bark beetle damage. The temporal 
analysis of G2 and G3 (Appendix E – Fig. E2) also highlights key spectral 
regions with notable differences over time, especially in the 480–570 nm 
and 700–750 nm ranges. The most substantial variations became 
apparent from D8 (August 4) onward.

3.2.2. Temporal changes in vegetation indices
The rate of change varied among the VIs, with some indices exhib

iting greater temporal fluctuations in value ranges than others. In Ap
pendix F – Fig. F1, the radar plots illustrate how infestation influences 
the spectral response of Vis of infested trees (G1) over time in compar
ison to healthy trees. A noticeable reduction in overlap of polygons 
(representing values) between healthy and infested trees was observed 
from D4 onwards for several VIs, particularly ARI1, CHLRE, PRI, 
DDI, CI, CI-G, CI-REG, NR1, and NR2. For other indices: NDVI, WBI, 
PSRI, WBI/NDVI, GREENNESS, and ZM the degree of overlap between 
healthy and infested trees began to decline from D7 (July 19). For the 
other indices it was even later.

Fig. 8 illustrates the temporal evolution of mean REIP (Red-Edge 
Inflection Point) shifts between the healthy and G1 of infested trees. The 
REIP shift became distinctly discernible on D4 (June 15). The pro
nounced change in the REIP magnitude in this and following dates 
clearly indicates stress induced by the bark beetle, implying severe 
damage of the infested spruce trees. The results of G2 and G3 are pre
sented in Appendix F – Fig. F2.

3.3. Statistical analysis of spectral separability

3.3.1. Jeffries-Matusita distance
The separability between healthy and G1 infested trees is presented 

in a heatmap of the Jeffries–Matusita (JM) distance, based on single-date 
hyperspectral imagery (Fig. 9). Temporally, the JM distance gradually 
increased over time, signaling a growing distinction between healthy 
and infested trees, even without reaching statistical significance. This 
increase was first observed in the red band, followed by the visible 
bands, and then the NIR.

For Groups G2 and G3, the most pronounced differentiation was 
observed on D8 (August 4), as shown in Appendix G – Fig. G1. However, 
despite these trends, JM distances never exceeded 1.90 for any group or 
date. Since a JM value of 1.90 or greater is considered indicative of 
effective separation of healthy and infested trees, and values at or below 
1.0 reflect poor separability, the results indicate that the distinction 
between healthy and infested trees remained limited throughout the 
study period.

3.3.2. Analysis of similarities
The results of the ANOSIM analysis conducted on both reflectance 

Fig. 5. Bark beetle infestation development observed in the field on the dates of 
UAV data acquisition for G1 (trees infested on 03 June), G2 (trees newly 
infested on 15 June), and G3 (trees newly infested on 24 June).
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spectra and their first derivatives for G1 are presented in Table 2. For 
reflectance, the R values remained below 0.3 until D7 (July 19), indi
cating minimal separability between the healthy and infested trees. On 
D8 (August 4), R values increased to the intermediate range (0.3 < R <
0.65), and by D9 (August 25), they exceeded 0.65 suggesting strong 
separation at this final stage. In contrast, the first derivatives revealed 
differences earlier. For G1, R values were already in the intermediate 
range by D7 and surpassed 0.65 on D8, indicating earlier spectral 
divergence between healthy and infested trees than reflectance alone 
could detect. Notably, for G1, discernible differences emerged on D8 
using reflectance, and as early as D6 (July 1) based on first de
rivatives, and demonstrating greater sensitivity of this approach 
(with 0.3 < R < 0.65 and p-value < 0,005).

Similar patterns were observed in G2 and G3, as shown in Appendix 
H – Fig. H1. Both groups exhibited R values below 0.3 before and shortly 
after infestation. In G2, the transition to values above 0.65 occurred on 
D8 (August 4), while in G3, R values remained below 0.3 until D7, 
shifted into the intermediate range on D8, and exceeded 0.65 only on D9 
(August 25). Overall, the ANOSIM analysis based on individual bands 
with p-values < 0.005 decisively rejects the null hypothesis for group 
separation from D8 onward for G1 and from D9 for G2 and G3. The 
results confirm that first derivatives are more sensitive for the detection 
of spectral differences associated with bark beetle infestation.

3.3.3. Wilcoxon rank-sum test
The heatmaps in Fig. 10 illustrate the p-values obtained from the 

Wilcoxon rank-sum test, used to assess the spectral separability between 
healthy and G1 of infested trees for each sensing date. For individual 

spectral bands, significant differences (p-value < 0.05) between 
healthy and infested trees were first observed on D4 (June 15th, 13 
days after infestation on the bark was first detected), particularly 
within the 692–706 nm range. This pattern extended on D5 (June 
24th) to the same range and additionally to 626–644 nm. By D6 (July 
1st), significant differences spanned a broader portion of the spectrum, 
from 567 to 715 nm. On D7 (July 19th), disparities were primarily 
concentrated in the visible range. These effects intensified on D8 
(August 4th), with significant differences expanding into both the visible 
and near-infrared (NIR) regions. By D9 (August 25th), significant 
separability was observed across nearly the entire spectrum, except for 
some bands within the red-edge region. For VIs, noticeable separa
bility (p-value < 0.01) began on D4 (June 15th), with significant 
differences observed for indices such as PRI, CHLRE, RENDVI, DATT, 
MRESR, NDRE, DDI, CI-REG, REIP, and ZM. Results for G2 and G3 are 
in Appendix I – Fig. I1. In G2, statistically significant differences became 
evident on D8 (August 4th, 49 days after detected infestation), partic
ularly within the visible and NIR plateau regions. Similarly, in G3, sig
nificant spectral differences began to appear on D8 (August 4th), 
initially within the visible spectrum and expanding to include both 
visible and NIR wavelengths by D9 (August 25th). In terms of VIs, 
separability in G2 emerged by D8, and G3 exhibited comparable trends 
to G2.

3.3.4. Difference in difference
The results of the DiD analysis for comparison of reflectance of 

healthy and G1 of infested trees revealed the following findings across 
the nine time periods and individual spectral bands (see Fig. 11), listed 

Fig. 6. Mean spectral signatures extracted for healthy trees and G1 of infested trees in each of the 9 sensing dates (D1 – 16 May, D2 – 03 June, D3 – 08 June, D4 – 15 
June, D5 – 24 June, D6 – 01 July, D7 – 19 July, D8 – 04 August, D9 – 25 August); (a) shows the spectral regions: Near infrared (NIR), RedEdge (RE), Red(R), Green 
(G), Blue (B). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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in chronological order: 

● At D6, spectral bands B134 to B138 (697–706 nm) showed signifi
cant differences, with a positive treatment effect.

● From D7 onwards, significance appeared in bands B4 to B133 
(406–695 nm), consistently demonstrating a positive treatment 
effect.

Fig. 7. 1st derivative mean values for healthy trees and G1 of infested trees in each of the 9 sensing dates (From D1 – 16 May 2022 to D9 – 25 August 2022).

Fig. 8. REIP temporal evolution of the comparison between healthy trees and 
G1 of infested trees in each of the 9 sensing dates (From D1 – 16 May 2022 to 
D9 – 25 August 2022). (Note: This visual representation of REIP was selected for 
its interpretability, as VIs and REIP have significantly different ranges.). REIP: 
Red-Edge Inflection Point. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Heatmap of bands importance using Jeffries-Matusita Distance 
computed between healthy and G1 of infested trees for each of the 269 spectral 
bands and for each of the 9 dates of acquisition (From D1 – 16 May 2022 to D9 – 
25 August 2022).

S. Bijou et al.                                                                                                                                                                                                                                    Ecological Indicators 178 (2025) 113869 

10 



● Starting from D8, spectral bands B148 to B233 (729–919 nm) 
exhibited significant differences, but with a negative treatment 
effect.

● Finally, significance persisted in bands B234 to B243 (922–942 nm) 
until D9, continuing to show a negative treatment effect.

Regarding VIs, significant effects were observed at various time 
points, as illustrated in Fig. 12: 

● At D5 (24th June), the indices REIP, MRSER, and PRI showed sig
nificant differences (p < 0.05), all indicating a negative treatment 
effect.

● At D6 (1st July), significance was detected for a broader set of 
indices: CI_REG, CI, DDI, DATT, NDRE, RENDVI, CHLRE, NR1, NR2, 
ZM, and ARI1.

● At D7 (19th July), the first significant differences appeared for NDVI, 
PHYT, N_NDVI, CI_G, GREENESS, CARI, WBI/NDVI, and PSRI.

● At D8 (4th August), significance emerged for the MCARI index.
● Finally, the index CARI did not exhibit statistical significance until 

the last time point, D9 (25th August).

A similar trend in significance was observed earlier for both reflec
tance and VIs. At D4, a positive treatment effect was detected in spectral 
bands B51 to B87 (511–592 nm), and for several VIs at D2 (June 3rd), 
including PHYT, N_NDVI, DATT, MRSER, RENDVI, GREENESS, CHLRE, 
ARI1, PSRI, NDVI, NR1, NR2, and ZM. However, this significance was 
not consistent over time.

4. Discussion

4.1. Important findings and their comparison with previous studies

In our study, we were able to detect bark beetle infestation in the 
hyperspectral imagery for G1 of infested trees on June 15, which is day 

Table 2 
Results of ANOSIM between healthy trees and G1 of infested trees (for Reflec
tance and 1st derivatives) for each sensing date, R values and p-values for G1; 
light orange cells highlight R < 0.30, orange cells highlight 0.30 < R < 0.65, and 
red cells highlights R > 0.65.

Day (date) Reflectance 1st derivatives

R P-value R P-value

D1 (16 May) 0.02494 0.583 0.06912 0.105
D2 (03 June) 0.01863 0.267 0.03967 0.191
D3 (08 June) 0.02585 0.580 0.007363 0.317
D4 (15 June) 0.03286 0.265 0.0846 0.089
D5 (24 June) 0.06687 0.132 0.2727 0.006
D6 (01 July) 0.05545 0.128 0.3351 0.001
D7 (19 July) 0.2066 0.021 0.492 0.001
D8 (04 August) 0.361 0.003 0.765 0.001
D9 (25 August) 0.8656 0.001 0.996 0.001

Fig. 10. P-values heatmaps results of the spectral separability between healthy trees and G1 of infested trees for each sensing date (From D1 – 16 May 2022 to D9 – 
25 August 2022), (a) for individual bands and (b) VIs.

Fig. 11. Spectral regions with significant differences detected by the DiD method at different sensing dates.
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13 after the first visible bark symptoms (such as boring holes, boring 
dust and resin flow), appeared on the trunks of infested trees. On this 
day, we identified statistically significant differences between healthy 
and G1 of infested trees using the WRST (refer to Fig. 10). This was 
approximately 22 days after the estimated start of bark beetle infestation 
on May 24, as indicated by thermal sum calculations. The detection 
occurred while the trees were still in an early GS, 15 days before any 
visible crown discoloration.

Compared to previous studies, our detection timing is rather early. 
Huo et al. (2023a) reported detectable spectral symptoms 35 days post- 
attack, Bozzini et al. (2024) approximately two months post-attack, and 
Bárta et al. (2022) 23 days after the first visible bark symptoms. The 
difference may be due to the lower spatial resolution of aerial hyper
spectral imagery (0.5 m) used by Bárta et al., in contrast to our UAV- 
based imagery at 3 cm resolution. In pine species, specifically Pinus 
thunbergii infested by Bursaphelenchus xylophilus, Pan et al. (2024)
observed spectral changes 14 days post-infection using close-range 
spectroscopy and a Random Forest classifier (accuracy 59.2 %). How
ever, the mechanism of damage in pine wilt disease differs from that in 
spruce trees attacked by bark beetles (Umebayashi et al., 2011; Urbanek 
Krajnc, 2009), which likely accounts for the variability in detection 
timing between species.

The most effective spectral wavelengths for early detection in our 
study were located in the red-edge region (692–706 nm), followed by 
the red region (626–644 nm), the broader green–red–red-edge region 
(568–715 nm), and finally the NIR region (740–956 nm). Notably, the 
interval between 720–729 nm appeared insensitive to infestation. These 
findings are consistent with previous studies identifying red-edge 
reflectance, especially around 705 nm, as the earliest spectral indica
tor of infestation (Huo et al., 2023a). Huo et al. (2023a) also reported 
red-edge sensitivity. Their detection occurred later, 15 % of trees were 
detected at 35 days post-attack (June 21), and 90 % after 70 days, when 
discoloration became visible. In their follow-up study (Huo et al., 2024), 
spectral differences between healthy and infested trees were again 
detected in the red-edge region (670–780 nm). The effectiveness of the 
red-edge region has also been confirmed by several other studies 
(Minařík and Langhammer, 2016; Hellwig et al., 2021; Bárta et al., 
2021; Abdullah et al., 2019; Einzmann et al., 2021; Campbell et al., 
2004). According to Kautz et al. (2024), across 26 reviewed studies, the 
red-edge had a high potential for detecting GS at 45 %, followed by the 
green region (40.9 %), with lower effectiveness in NIR (36.4 %) and blue 
(22.7 %) bands across 26 reviewed studies.

In comparison with red-edge, the red region becomes more infor
mative at later stages not only in our case but also in other studies 
(Klouček et al., 2019; Junttila et al., 2022). Bárta et al. (2022) detected 
infestation based on red-band differences 23 days after bark symptoms 
appeared. The limited sensitivity of the NIR region in early infestation 
stages noted in our study was supported by several others (Bijou et al., 

2023; Dalponte et al., 2023; Trubin et al., 2024; Klouček et al., 2019; 
Bárta et al., 2022; Huo et al., 2021). While red-edge reflectance is highly 
sensitive to early changes in chlorophyll concentration and photosyn
thetic efficiency, NIR primarily reflects internal leaf structure and 
biomass, which are typically affected later. At early stages, these 
structural changes may be too subtle to impact NIR reflectance signifi
cantly. Moreover, NIR signals may be influenced or masked by unrelated 
factors such as leaf hydration, water stress, or canopy geometry 
(Barbedo, 2019; Zhang et al., 2023; Hase et al., 2022), further compli
cating interpretation.

Regarding detection using VIs, red-edge VIs outperformed all others 
in our study. We observed significant differences between healthy and 
infested trees in indices such as PRI, CHLRE, RENDVI, MRESR, NDRE, 
DATT, DDI, CI-REG, REIP, and ZM as early as June 15, i.e. 13 days after 
visible bark symptoms appeared, similarly to the timing of direct spec
tral detection (refer to Appendix F – Fig. F1). In Bárta et al. (2022), REIP, 
PRI, and ANCB650–720 showed the strongest significance 22 days after 
the first bark symptoms. In contrast, Huo et al. (2024) reported lower 
detection rates for PRI and REIP (0.69 and 0.34, respectively) in a sce
nario where beetle swarming occurred later in the season (after July 5).

Indices associated with pigment content, such as NDVI, were found 
to be less effective during the middle of the season. Their performance 
improved only later, particularly on July 19 for G1 (which corresponds 
to 45 days after bark symptoms, 56 days after the start of infestation, and 
18 days after start of crown discoloration). In Bozzini et al. (2024), NDVI 
and SAVI detected infestation 33 days after bark beetle activation, while 
NDRE, GNDVI, and MR_mDSWI2 showed significant detection 63 days 
after activation. Similar temporal patterns were also reported by Klou
ček et al. (2019) and Dalponte et al. (2023).

In our case, NDRE also proved to be an effective index for GS 
detection, supporting the findings by Bozzini et al. (2024) and Marx 
et al. (2024), who achieved 77.4 % accuracy in mid-June using the 
NDRE 758_714 index, despite limited information on the exact timing of 
infestation. Dalponte et al. (2023) reported a first-generation bark beetle 
attack after May 6, with bark symptoms in their group G1 observed on 
July 28, and spectral changes were detected on August 11, using indices 
such as NDRE, GARI, NDVI, GNDVI, and NRVI, which is in close 
agreement with our findings.

Based on the consistency of observed differences, we consider D4 (15 
June) to be the first reliable detection date in our study, as the spectral 
and index-based separability between healthy and infested trees 
remained stable from this point onward during following dates. Some 
results indicated potential differences already on D3 or even D2, 
particularly spectral signatures extracted for healthy and infested trees 
and the results of DiD analysis (see chapters 3.2.1 and 3.3.4). However, 
the WRST did not identify a statistically significant difference. This 
result is best explained by increased within-group variability caused by 
unstable illumination during image acquisition on D2 and D3 (refer to 

Fig. 12. Significant differences detected by the DiD method for VIs observed at nine dates for G1. The asterix refers to the statistical significance observed for several 
VIs as well, at D2 (June 3rd), including PHYT, N_NDVI, DATT, MRSER, RENDVI, GREENESS, CHLRE, ARI1, PSRI, NDVI, NR1, NR2, and ZM, which was not consistent 
over time.
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Section 2.2), when intermittent cloud cover led to a mix of sunlit and 
shaded crowns. This likely masked real physiological differences by 
increasing overlap between reflectance distributions.

The WRST, a non-parametric method, compared healthy and infes
ted trees within a single acquisition date, minimizing the impact of 
environmental variables. Unlike DiD, which is influenced by factors like 
light conditions and weather, the WRST isolates differences related to 
tree health, controlling for external variables. On D4, the Wilcoxon test 
detected spectral differences for G1 by excluding these confounding 
factors. DiD, in contrast, is more robust for multitemporal analysis but 
can be affected by seasonal variation or events such as flowering or 
changes in illumination. This limitation became evident on D2, when 
DiD indicated significance in some indices. However, this significance 
cannot be attributed to bark beetle infestation due to the lack of tem
poral consistency. Among the methods applied, WRST is considered to 
be most robust against outliers and non-normal distributions, making it 
the most reliable for detecting true spectral separability under incon
sistent acquisition conditions and small sample size (Dao, 2022).

In addition to WRST and DiD, we tested JM distance and ANOSIM 
approaches to evaluate separability between categories (healthy and 
infested trees), focusing on interpretable methods suited to our small- 
scale dataset. These methods were found to be less sensitive for early 
detection. JM showed low category separability during the early infes
tation stages, aligning with findings by Magstadt et al. (2021), who 
observed similar limitations in distinguishing recently stressed trees. 
ANOSIM was more sensitive applied to first derivatives rather than 
direct reflectance but still showed limited robustness across spectral 
regions and time steps.

One important insight from our study is that separating trees infested 
during different waves of attack by parental beetles from the initial 
swarming event can improve the detection of early spectral signs of 
infestation. In our case, the first visible bark symptoms appeared in 
group G2 12 days after G1, and in group G3 21 days after G1 (i.e. 8 days 
after the date of successful spectral detection of infestation in G1). 
Mixing signals from trees already showing developing symptoms (G1), 
trees that had just been infested (G2), and still healthy trees (G3) could 
mask the early spectral indicators specific to G1. This temporal sepa
ration, suitable mainly in research studies, is not only methodologically 
justified but also ecologically grounded. Ips typographus typically 
spreads through stands in waves, driven by staggered swarming flights, 
microclimatic variation, and differences in host tree susceptibility 
(Jones et al., 2019; 2014, Botterweg 1982). For example, sun-exposed 
edge trees may be attacked earlier – a pattern described as the “sun ef
fect” (Kautz et al., 2013). Accounting for this spatiotemporal pattern is 
critical for accurate analysis and interpretation of remote sensing data.

4.2. Possibilities to enhance bark beetle management using remote sensing

Comparison of results from various bark beetle studies and assess
ments of the effectiveness of RS for early bark beetle detection remains 
challenging due to multiple factors, including differences in weather 
conditions, altitude, availability of reliable ground truth data and also 
time series of RS data with high spectral and spatial resolution. A major 
issue lies in the lack of standardized definitions, particularly regarding 
the timing and characterization of infestation stages. Researchers often 
define the GS, YS, RS and GRS in their studies independently of ground 
truth observations, phenological stages, and based only on crown 
discoloration in RGB orthomosaics. They frequently do not provide clear 
criteria regarding the start and duration of each RS stage in comparison 
to phenological stages. This lack of clarity is particularly relevant for the 
GS, as the exact timing of start of infestation is often uncertain or only 
loosely estimated. In our view, the critical factor is not whether detec
tion occurs during the GS, but how early within this stage it takes place 
(specifically, before initial crown discoloration and before the emer
gence of new filial generation of beetles). The subsequent YS, RS and 
GRS was not the focus of this study, as crown discoloration visible at 

those points generally indicates that the optimal window for effective 
sanitation has already passed.

As referred in the Introduction, there have been previous attempts to 
subdivide the GS, but these efforts were incomplete or lacked consistent 
criteria (Dalponte et al., 2023, Kautz et al., 2024). In our study, we 
combined detailed ground truth data (based on repeated field temporal 
observations of each infested tree), a dense time series of hyperspectral 
imagery, thermal sum calculation (for the start of swarming estimation), 
consultations with experienced forestry experts, and an extensive liter
ature review. Based on these inputs, we attempt to estimate the time 
window within the GS (in connection with the phenological develop
ment and progression of bark beetle infestation) during which RS re
mains effective and can support timely and targeted sanitation efforts.

In our view, the GS should be subdivided more precisely, because 
towards its end, detection using RS may no longer be early enough to 
allow for effective sanitation. Therefore, we propose a new subdivision 
of the GS, illustrated in Fig. 13. The left part of the figure is based on our 
specific data and observation dates for G1, including Day 13, when we 
were able to detect the infestation in our spectral data. The right part of 
the figure presents generalized milestones and key points that indicate 
the critical time frame for effective RS-based detection. We propose 
dividing the GS into three sub-stages: G-HS, G-BS, and G-YS, each 
marked by approximate time intervals of several weeks, representing 
meaningful thresholds for practical forest management.

We defined the G-HS stage (Green Hidden symptoms Stage) as a 
period immediately after the estimated start of infestation, when trees 
have already been infested (according to the result of the thermal sum 
calculation), but symptoms of bark beetle presence are very subtle and 
invisible from the ground. Therefore, we call this infestation a “hidden” 
infestation. This may occur when bark symptoms (tiny entry holes) 
remain in the upper parts of the crown and boring dust is produced only 
minimally, making detection from the ground nearly impossible. The 
estimated duration of this stage in our study is approximately 10 days. 
Detection by RS at this stage remains uncertain and largely hypothetical, 
as infested trees most probably do not yet exhibit sufficiently pro
nounced physiological changes to be detectable in the spectral signal. To 
our knowledge, evidence of successful detection by RS in this stage has 
not been reported in the literature.

The subsequent stage, G-BS (Green Bark symptoms Stage), is defined 
as the period when infestation symptoms become clearly visible on the 
bark in the lower parts of the trunk, but no discoloration is yet visible in 
the crown. This stage begins approximately 10 days after infestation (up 
to two weeks after infestation according to Lubojacký et al., 2018, Webb 
et al., 2024) and we assume it lasts approximately 3 weeks. During this 
stage, RS can be an effective tool for detecting the extent of the outbreak 
and identifying infested trees. We assume that if detection occurs within 
3 weeks after bark-visible infestation (i.e., approximately 4–5 weeks 
from the estimated start of infestation in our case), it is still early enough 
to prevent the emergence of a new generation of bark beetles (the point 
of the safe detection – Fig. 13). Detection in this stage can therefore 
effectively prevent beetle emergence and significantly contribute to 
rapid sanitation and the prevention of further spread. In our case study, 
the first reliable detection of the G1 of infested trees occurred during this 
“safe stage” – on Day 13 after the bark-visible infestation.

Towards the end of the G-BS, around the 4th week after bark-visible 
infestation (approximately 5–6 weeks from infestation), this may be the 
last possible moment for RS to detect infestation in a timely manner (the 
point of the last moment detection). Particularly during strong out
breaks under warm and dry conditions, the emergence of a new beetle 
generation may already occur during this time (Jacoby et al., 2019, 
Kautz et al., 2023), meaning that detection may no longer enable 
effective sanitation.

This is followed by the G-YS (Green-Yellow Stage) characterized by 
initial crown discoloration (first yellowing mixed with still predomi
nantly green foliage) which starts approx. in week 5 after the bark- 
visible infestation. This stage is associated with a high probability of 
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second-generation bark beetle emergence, beginning approximately in 
week 6 after bark-visible infestation (Bárta et al., 2022, Kautz 
et al.,2023, Kautz et al., 2024). Therefore, week 6 after bark-visible 
infestation can be considered the starting point of late detection, 
beyond which preventing the emergence of a second generation is no 
longer possible. Additionally, since visible yellowing is already apparent 
at this stage, field detection becomes easier, and the importance of RS 
decreases significantly. Detection using RS in subsequent stages, YS, RS, 
and GRS, has rather limited value for forest management, as the infes
tation is easily recognizable with traditional methods, emergence is 
already in progress, and intervention is too late to have a significant 
impact.

The proposed stages of RS detection and key points are derived from 
our experience, existing publications on RS-based detection, and pri
marily from bark beetle phenology and the diagnostic importance of 
field-observed symptoms. We are aware that in reality, the boundaries 
between these stages are not strict but rather flexible, as they gradually 
transition into each other. However, in principle, these stages and key 

milestones should be applicable and relevant for enhancing the effec
tiveness of RS in bark beetle management in general. Nevertheless, 
specific conditions of other case studies or areas should always be taken 
into consideration.

While the proposed early detection method based on UAV sensing 
and hyperspectral data shows strong potential at the local scale under 
controlled conditions, its feasibility for larger forested areas remains 
limited. Achieving high spatial and spectral resolution often results in 
reduced spatial coverage and increased computational requirements. 
Hyperspectral sensors are costly and often impractical in field settings. 
The data processing is complicated by high dimensionality, large data 
volumes, noise, atmospheric interference, and the difficulty of 
mosaicking forested areas (Adão et al., 2017). A solution, suggested by 
Marx et al. (2024), involves resampling hyperspectral data into broad
band multispectral data, using resampled NDRE for GS tree classifica
tion, with no loss of accuracy between the two sensors. Similarly, Huo 
et al. (2024) developed green-shoulder indices using hyperspectral data 
but targeted them for use with simpler, less costly multispectral sensors. 

Fig.13. Proposed sub-stages of the green stage and key milestones for the enhancement of bark beetle management using remote sensing, based on our observations 
for the overwintered generation. The left part of the figure reflects our specific data and observation dates for G1, including Day 13, when we were able to detect the 
infestation in our spectral data. The right part presents a set of generalized milestones, proposed based on observed infestation dynamics, that indicate the 
approximate critical time frame for effective remote sensing-based detection, aligned with the timeline of G1 infestation and its phenological development. For a 
detailed explanation of the individual stages and key points, refer to the text in this chapter (Discussion). Note: Bark beetle development and emergence were not 
modelled; the timing is only theoretical. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Based on our findings on the effectiveness of the red-edge region 
(692–706 nm) for early detection, sensors specifically designed to cap
ture this spectral range could be developed. For example, the MAIA S2 
multispectral camera (SAL Engineering S.R.L. and EOPTIS S.R.L., Italy), 
with nine spectral bands covering wavelengths from 390 to 950 nm and 
used by Huo et al. (2023), could represent a viable alternative to 
hyperspectral sensors, particularly when high-density imagery and 
ground-truth data are collected within the first three weeks following 
the bark visible infestation. However, additional studies are needed to 
determine whether such multispectral configurations can consistently 
achieve detection performance comparable to hyperspectral systems, 
particularly in early infestation stages.

5. Conclusions and future directions

5.1. Conclusions

● In our study, we demonstrated the effectiveness of the time series of 
UAV hyperspectral imagery in detecting the bark beetle infestation. 
We were able to detect the infestation 13 days after the visible 
symptoms of infestation appeared on the lower parts of the bark. It 
was on June 15–22 days after the estimated start of infestation. The 
detection occurred while the trees were still in G-BS stage, 15 days 
before any visible crown discoloration.

● The most effective spectral wavelengths for early detection in our 
study were located in the red-edge region (692–706 nm) and the 
most sensitive VIs were PRI, CHLRE, RENDVI, MRESR, NDRE, DATT, 
DDI, CI-REG, REIP, and ZM. The most sensitive and robust detection 
method was WRST followed by DiD.

● Hyperspectral data provides enhanced capability for identifying 
early forest damage caused by bark beetles compared to multispec
tral data. In our previous investigation using multispectral imagery 
for the same dates and with the same spatial resolution, significant 
statistical results did not emerge until a later stage in the season, 
around July 19th (Bijou et al., 2023), likely due to the coarser 
spectral resolution.

● We proposed new sub-stages of the GS to improve the timing and 
targeting of RS-based detection: G-HS – green hidden symptoms 
stage with subtle bark symptoms hidden in the upper parts of the 
trunk (lasts approx. 1–10 days from the start of infestation); G-BS – 
green stage with bark symptoms on the lower parts of the trunk and 
crowns remaining green (lasts approx. 3 weeks); G-YS – green-yel
low stage with initial crown discoloration (starts approx. in week 5 
after bark visible infestation).

● Our results indicate that RS detection during the late GS, particularly 
in the late G-BS stage, occurring later than approx. 4 weeks after bark 
visible infestation, may no longer be timely enough, especially in 
cases where the emergence of a new bark beetle generation begins 
within this period.

● We concluded that if RS detection occurs within three weeks after 
bark-visible infestation, it can serve as a highly effective tool to 
enhance bark beetle management and prevent further spread of the 
infestation.

5.2. Future directions and recommendations

● For future research and practical application in the field of remote 
sensing-based detection of bark beetle infestation, we recommend 
that studies focusing on early detection use clearly defined and 
standardized sub-stages of bark beetle infestation, supported by 
reliable ground-truth data and detailed information on the timing 
and duration of symptom development in each phenological stage. 
With such methodological precision will it be possible to robustly 
demonstrate the ability of remote sensing to detect bark beetle 
infestation in a timely manner, for an efficient forest sanitation.

● Dense time series of hyperspectral data from the start of infestation, 
with spatial resolutions on the order of centimeters, are recom
mended for the effective detection of early-stage bark beetle infes
tation. This approach currently faces practical limitations, such as 
high sensor costs, limited spatial coverage, need of an intensive field 
support, and complex data processing, which constrain its scalability 
to larger forested areas. Despite these current limitations, our 
experimental approach represents an important step toward refining 
early detection methods, which are likely to become increasingly 
effective and scalable as remote sensing technologies continue to 
advance.

● Developing selective, low-cost sensors optimized for the most sen
sitive spectral regions could significantly enhance early detection 
capabilities and improve operational management practices when 
combined with UAV platforms capable of efficiently covering large 
forest areas. In light of our results, the red-edge region appears 
particularly promising for this purpose and deserves further 
exploration.
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Klouček, T., Komárek, J., Kycko, M., Hrach, K., Modlinger, R., 2024. Detection of bark 
beetle infestation using UAV-borne multi-spectral imagery: a case study of the 
mountain Norway spruce managed forest in the Czech Republic. Remote Sens. 
(Under Review) 1–13. https://doi.org/10.3389/ffgc.2024.1215734.

S. Bijou et al.                                                                                                                                                                                                                                    Ecological Indicators 178 (2025) 113869 

16 

https://doi.org/10.1016/j.jag.2017.09.009
https://doi.org/10.3390/rs9111110
https://doi.org/10.3390/rs9111110
https://doi.org/10.1016/j.foreco.2009.09.001
https://doi.org/10.1126/science.aaz7005
https://doi.org/10.1126/science.aaz7005
https://doi.org/10.3390/RS12010034
https://doi.org/10.3390/RS12010034
https://doi.org/10.1016/j.foreco.2007.05.023
https://doi.org/10.1016/j.foreco.2007.05.023
https://doi.org/10.3390/drones3020040
https://doi.org/10.3390/drones3020040
https://doi.org/10.1016/j.foreco.2021.119984
https://doi.org/10.1016/j.jag.2021.102335
https://doi.org/10.1016/j.foreco.2012.12.018
https://doi.org/10.1016/j.foreco.2012.12.018
https://doi.org/10.1111/j.1439-0418.1982.tb02594.x
https://doi.org/10.3389/ffgc.2024.1385687
https://doi.org/10.5194/cp-18-2155-2022
https://doi.org/10.1016/j.jeconom.2020.12.001
https://doi.org/10.1016/j.jeconom.2020.12.001
https://doi.org/10.1080/01431160410001726058
https://doi.org/10.1080/01431160410001726058
https://www.chmi.cz/historicka-data/pocasi/denni-data/Denni-data-dle-z.-123-1998-Sb
https://www.chmi.cz/historicka-data/pocasi/denni-data/Denni-data-dle-z.-123-1998-Sb
https://doi.org/10.1016/j.rse.2005.03.009
https://doi.org/10.1016/j.ecolind.2023.110349
https://doi.org/10.1016/j.ecolind.2023.110349
https://doi.org/10.1016/j.rse.2013.09.006
https://doi.org/10.1016/j.rse.2013.09.006
https://doi.org/10.1016/j.apenergy.2022.119209
https://doi.org/10.1016/j.apenergy.2022.119209
https://doi.org/10.1111/j.1439-0418.2006.01123.x
https://doi.org/10.1016/j.rse.2021.112676
https://doi.org/10.1038/s41467-021-21399-7
https://doi.org/10.3390/su142315726
https://doi.org/10.3390/su142315726
https://doi.org/10.1016/j.agrformet.2021.108746
https://doi.org/10.1016/j.agrformet.2021.108746
https://doi.org/10.3390/rs13224659
https://doi.org/10.3390/rs13224659
https://doi.org/10.1007/s40725-021-00142-x
https://doi.org/10.2533/chimia.2023.623
https://doi.org/10.1016/j.isprsjprs.2024.07.027
https://doi.org/10.1016/j.rse.2023.113484
https://doi.org/10.1016/j.rse.2023.113484
https://doi.org/10.1109/IGARSS52108.2023.10282624
https://doi.org/10.1109/IGARSS52108.2023.10282624
https://doi.org/10.1016/j.rse.2020.112240
https://doi.org/10.1016/j.rse.2020.112240
https://doi.org/10.1111/gcb.14766
https://doi.org/10.1139/cjfr-2018-0304
https://doi.org/10.1139/cjfr-2018-0304
https://doi.org/10.1016/j.agrformet.2007.05.006
https://doi.org/10.3390/rs14040909
https://doi.org/10.1007/s10342-013-0685-2
https://doi.org/10.1016/j.foreco.2023.121595
https://doi.org/10.1007/s10340-022-01490-8
https://doi.org/10.3389/ffgc.2024.1215734
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