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Abstract  

Forest disturbances are a natural phenomenon, however, understanding of their spatial  

progression is essential to adapt appropriate management strategies. Because most disturbances  

are to some extent influenced by management measures, it is necessary to study disturbances  

in areas with minimal human interference. This study aims to detect and analyse the progress  

of disturbance in and around a non-intervention zone of the Krkonoše National Park in the  

Czech Republic. Our analysis showed that either Sentinel-2 based or airborne-based approach  

was able to detect ongoing disturbances, however, spatial resolution is a key parameter for the  

detection of small-scale forest disturbances. Both sources independently identified a distance  

of up to 125 m from previous disturbances as the area with the highest risk of further  

propagation. The specific distance depends on the phase of disturbance at the site. The distance  

is lower in areas experiencing a progressive disturbance phase (i.e. 75 m in areas with a high  

population density of bark beetles). A sequence of remote sensing detection and buffer zone  

creation could be used as a tool for assessing risk areas in forest stands.  
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1. Introduction 

Forest disturbances, natural (due to droughts, windthrows, fires, insect outbreaks etc.) and 

anthropogenic (management activities, logging), are integral part of forest ecosystem dynamic. 

The regime of natural disturbance has recently changed as their occurrence and severity has 

increased due to climate change impacts (Patacca et al., 2023; Seidl et al., 2017, 2011). 

Disturbances by drought and wind are often trigger points for other disturbances caused by fires 

and insects (Seidl et al., 2017). The most important disturbance agent in European forests is 

wind, followed by fire and bark beetle (Ips typographus, L.) (Thom et al., 2013). The bark beetle 

disturbance doubled its share of the total damage in the last 20 years (Patacca et al., 2023). The 

bark beetle is a significant forest insect pest, primarily attacking mature Norway spruce (Picea 

abies (L.) H. Karst) and plays a not negligible role in shaping forest dynamics (Wermelinger, 

2004). Outbreaks of Ips typographus typically begin with the colonization of weakened or 

wind-thrown Norway spruce trees. This pattern is typical of a low and stable population level, 

known as the endemic phase (Hlásny et al., 2019; Wermelinger, 2004). During this stage, most 

beetles disperse by moving a few hundred metres per generation. However, rare individuals can 

travel over a kilometre. The particular distance depends on the availability of susceptible 

breeding material and population density. The distance between newly attacked trees is shorter 

during the epidemic phase (Hlásny et al., 2019; Økland et al., 2016; Wermelinger, 2004). Due 

to the spatial nature of bark beetle spread, much of the research has focused on identifying areas 

at a higher risk of infestation. Doležal et al. (2016) tested this distance using pheromone traps 

to catch marked beetles. Byers et al. (2000) tested bark beetle dispersal using a model to 

simulate their flying capabilities. Other studies employed aerial or satellite imagery (Kautz et 

al., 2011; Lausch et al., 2012; Potterf et al., 2019), airborne laser scanning (Stereńczak et al., 

2014), or ground-based true data observation (Stadelmann et al., 2014).  As Norway spruce is 

a cornerstone species of the timber industry in many countries, bark beetle outbreaks may have 

severe economic impacts on the forestry sector (Hlásny et al., 2021b; Montagné-Huck & 

Brunette, 2018). Although bark beetle outbreaks may contribute positively to biodiversity by 

creating diverse habitat structures (Müller et al., 2008; Vrba et al., 2024), their overall impact 

negatively influences ecosystem services and reduces forest carbon storage capacity (reviewed 

by Hlásny et al., 2021a). 
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In the Czech Republic, about 34.2% of the country is covered by forests, with about 46% of 

that being Norway spruce dominated, productive forests (MZE, 2024). The transformation of 

Europe's natural mixed broadleaved forests into monoculture conifer plantations, particularly 

with Norway spruce and Scots pine (Pinus sylvestris L.), has been well-documented over the 

past few centuries (Kirby & Watkins, 2015). Norway spruce stands were often planted outside 

its optimum environmental conditions, i.e. in the lower elevations. With rapidly changing 

climate in recent decades, spruce trees have become less resilient to more frequent and extreme 

weather conditions such as windstorms, drought episodes (Brázdil et al., 2022) and have been 

losing their productive potential (Kusbach et al., 2025). The last massive bark beetle outbreak, 

starting around 2015, is considered as the most disastrous disturbance to Norway spruce forests 

over the territory of the Czech Republic in documented history (Brázdil et al., 2022; T. Hlásny 

et al., 2021b; Zahradník & Zahradníková, 2019). A Similar finding was reported from Germany, 

Austria or Slovakia (Hallas et al., 2024; Senf & Seidl, 2021). 

 

The dynamics of bark beetle outbreaks are different in nature protected areas, such as national 

parks, where forest management is limited or entirely absent, than in intensively managed 

forests, where salvage operations are used to suppress infestations. Moreover, areas with 

restricted management can become a trigger for a larger outbreak, especially after severe 

windstorms, when many dead trees are left uncleared. This has been documented in the past, 

for example in the Tatra National Park in Slovakia after the storm in 2004 (Nikolov et al., 2014; 

Potterf et al., 2019). Due to difficult terrain with a large elevation gradient, limited number of 

human resources and limited management interferences in the nature protection zones, the 

remote sensing-based methods have become a useful tool for monitoring disturbances in those 

areas (Bijou et al., 2023; Drechsel & Forkel, 2025; Senf et al., 2017). In combination with 

traditional forest monitoring methods, such as field surveys, more accurate and timely detection 

of disturbances can be achieved (Bárta et al., 2021). Studying the spatial distribution could help 

identify areas at high risk of disturbance spread in the following years, allowing forest 

management measures to be targeted at these areas (Kautz et al., 2011). 

Our study is therefore focused on remote sensing monitoring of forest disturbances (most likely 

bark beetle induced) and identification of potential hotspots for further spreading in the 

Krkonoše National Park in the Czech Republic. Specific research questions are formulated as 

follows: 1) What potential do satellite- and airborne-based systems offer for forest disturbance 

detection? 2) Which surrounding areas are at risk of further disturbance spread, and at what 

distance is the search for new disturbances most effective? 
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2. Material and methods 

2.1. Study area 

Study area is located in the Krkonoše National Park (KRNAP), the mountain range situated at 

the border between the Czech Republic and Poland (Fig. 1). KRNAP is the oldest national park 

in the Czech Republic and protects the relics of the tundra ecosystems and unique mosaic of 

natural alpine meadows, wetlands and forests in Central Europe. The area has a cold and humid 

climate, with mean annual temperatures 3.7 °C, and mean annual precipitation  of 1 346 mm 

(average values for the period 1991 – 2020 extracted for Pec pod Sněžkou area from the 

ClimRisk portal; ClimRisk, 2025). Forests cover approximately 85% of the park area and are 

dominated by Norway spruce stands, with remnants of natural beech-fir and mixed montane 

forests at lower altitudes. The area of interest covers the highest parts of the national park around 

the municipality of Pec pod Sněžkou, including the catchments of Horní Úpa and Horní Čistá 

streams (Fig. 1). The area of interest is approximately 90 km2 (about one quarter of the national 

park) that was fully covered by airborne hyperspectral images and lidar data in 2022. The data 

acquisition was repeated in two sub-areas with different progress of disturbance in 2024. Sub-

area A is situated at higher elevation (800–1300 m a.s.l.) and is dominated by natural and near-

natural spruce stands. Due to the non-intervention management regime, the area is at increased 

risk of bark beetle outbreaks, which caused significant damages in recent years. Therefore, in 

our study this sub-arearepresents a forest in a later stage, progressing disturbance. While sub-

area B, which is situated at an elevation of 800–1000 m a.s.l.,falls within the concentrated 

management zone, with a smaller portion of near-natural spruce stands. The area has been 

regularly affected by bark beetle outbreaks, although their intensity has been mitigated by active 

management interventions. In our study represents an incipient stage of disturbance. 
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Fig. 1. Overview of the study area and the coverage of the airborne data in 2022 and 2024. 

Airborne data in 2024 with higher spatial resolution were collected for two sub-areas, the 

central part labelled as A, and the southern part labeled as B. 

 

 

2.1. Remote sensing data and processing 

2.2.1. Airborne data 

Airborne hyperspectral and laser scanning data were acquired with the Flying Laboratory of 

Imaging Systems (Hanuš et al., 2023) operated by the Global Change Research Institute. The 

flying laboratory has on board a laser scanner LMS Q780 from Riegl and two imaging 

spectroradiometers from Itres Ltd., the CASI sensor covers the visible and near infrared range 

(VNIR 400 - 1000 nm), the SASI sensor covers the shortwave infrared range (SWIR 1000 - 

2500 nm). Two airborne campaigns took place on sunny, cloud-free days on 19 July 2022 and 

30 July 2024. Airborne images from July 2022 cover the entire area of interest in a single mosaic 

with the spatial resolution of 2 m per pixel in VNIR and 5 m per pixel in SWIR.   The second 

airborne image acquisition from July 2024 covers about 70% of 2022 flights, because we 
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focused on two sub-areas with different progress of disturbance. There we preferred higher 

spatial resolution (0.5 m per pixel in VNIR and 1.25 m per pixel in SWIR).  

Airborne hyperspectral data were pre-processed, including radiometric, georeferencing and 

atmospheric correction using the methods described in Hanuš et al. (2023). Vicarious 

calibration using a ground-measured reference target was used to improve the atmospheric 

correction. Spectral bands affected by water vapour absorption or by low signal-to-noise ratio 

(i.e. at the beginning (<450 nm) and the end (>2300 nm) of the spectral range) were discarded 

from further analysis. 

Airborne laser scanning data were processed into digital surface model (DSM) and canopy 

height model (CHM) following the processing chain described in Hanuš et al. (2023). The 

spatial resolution of lidar-based products was equal to the spatial resolution of the VNIR 

images. 

2.2.2. Satellite data 

Sentinel-2 imagery, processed to Level-2A surface reflectance, was used to construct annual 

cloud-free mosaic over the study area from 2017 up to 2024. Sentinel-2 imagery was chosen 

due to its high spatial resolution (20 m pixel size), frequent revisit time (5 days), and freely 

accessible data, making it highly suitable for annual assessments of forest disturbances. These 

yearly mosaics were generated from Sentinel-2 observations acquired during the summer 

months, specifically from June 1st to August 30th. The summer period was selected due to 

higher illumination angles, minimal shadow effects, and peak vegetation phenological stages, 

thus enhancing comparability between annual composites. For each year, a median composite 

of surface reflectance values was computed from all-available images after applying per-pixel 

cloud mask using the Sentinel Hub Cloud Detector (Sentinel Hub, 2025). The result is a time 

series consisting of seven cloud-free mosaics, each representing the summer median surface 

reflectance across the KRNAP study area. The entire workflow for generating cloud-free 

composites was fully automated using Google Earth Engine (GEE) cloud computing 

environment (Gorelick et al., 2017).  

These annual cloud-free mosaics were subsequently used to compute the Disturbance Index 

(DI) according to Healey et al. (2005). The Disturbance Index was selected over alternative 

indices like NDVI or NBR because its multidimensional integration of Tasseled Cap 

components (Brightness, Greenness, and Wetness) provides enhanced sensitivity to the 

complex spectral signatures of bark beetle-induced mortality, capturing both vegetation loss 
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and exposure of non-photosynthetic materials. The DI has been specifically validated for bark 

beetle detection in Central European spruce forests, with Kupková et al. (2018) demonstrating 

its effectiveness in similar mountainous conditions.  

Each component, Brightness (B), Greenness (G) and Wetness (W), was then normalized by 

subtracting mean (μ) and dividing by the standard deviation (σ), where these statistics were 

calculated exclusively from forested pixels within the study area (eq. [1]). Forest mask was 

calculated from a high-resolution forest border layer produced by the Czech Forestry Institute. 

Normalization of the Tasseled Cap components ensured that DI values were comparable across 

years and scenes by minimizing the influence of varying atmospheric conditions, illumination, 

and sensor differences. This step standardizes the data to a common scale, enhancing the 

temporal consistency and spatial transferability of disturbance detection results Healey at al. 

(2005). Normalization was based exclusively on forest pixels to ensure that the calculated mean 

and standard deviation reflect only the spectral characteristics of undisturbed forest, which is 

the reference baseline for detecting disturbances. 

 𝑋𝑟 = (𝑋 − 𝑋µ) 𝑋σ⁄  [1] 

Here, X corresponds to one of the three Tasseled Cap components (B, G, or W). The DI was 

subsequently derived from these normalized components as follows: 

 𝐷𝐼 = 𝐵𝑟 − 𝐺𝑟𝑊𝑟 [2] 

The resulting annual DI series enabled identification of forest degradation and disturbances. To 

enhance the robustness and reliability of disturbance detection, short-term DI trends were 

analysed by computing trend slopes using non-parametric Theil-Sen regression (Sen’s slope) 

over three periods: 2017-2022, 2017-2023, and 2017-2024. The Theil-Sen regression was 

employed for short-term trend analysis due to its robustness against outliers and insensitivity to 

non-normal data distributions, characteristics common in satellite-derived indices such as DI. 

This analysis was also automated within the GEE environment. For further analyses, we worked 

with the slope component of the regression line (refers to as DI slope value). These DI-based 

short-term trends provide an effective early-warning mechanism for forest managers, 

facilitating rapid identification of degraded or disturbed areas and enabling targeted 

management interventions. 

To precisely locate disturbances within actual forest areas, the satellite-derived DI trend data at 

20 m resolution were resampled to the spatial resolution of the VNIR data and then compared 

to lidar-based CHM with high spatial resolutions of 2 m (2022 dataset) and 0.5 m (2024 dataset). 
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Using these high-resolution CHMs, a fine-scale forest mask was created to exclude non-forest 

areas (e.g. smaller meadows, timber stacks, construction zones, and old clearcuts) from further 

analysis. The forest mask excluded pixels corresponding to canopy heights below 4 m, thereby 

removing disturbances in very young forests, and above 50 m, which helped eliminate artificial 

structures and errors inherent in the canopy height model data. 

2.3. Detection of disturbances from airborne data 

The detection of forest disturbance from the airborne data focused on identification of dead 

standing trees. It was based on a two-class classification (healthy and dead standing trees) that 

was performed by a decision tree algorithm. This method was more accurate than other 

supervised classification methods such as Support Vector Machine, K-Nearest Neighbour or 

Discriminant analysis, which were also tested on the training dataset (i.e., the classification 

accuracy was lower by 6%, 3% and 1%, respectively, compared to the decision tree). The 

classification algorithm was employed on both VNIR and SWIR data, being more accurate on 

the VNIR data with higher spatial resolution than the merged VNIR and SWIR data. Therefore, 

we further proceed with the classification on VNIR data only. Due to the change in spatial and 

spectral resolution of hyperspectral data in 2022 and 2024, the models were trained on manually 

selected trees' canopies for each hyperspectral data separately. An overall accuracy of 87% was 

achieved in the classification of healthy and dead trees for the 2022 airborne data, and 95% for 

the 2024 data. 

To minimize false detections the same forest mask using the height thresholds (<4 m & >50 m) 

as for the satellite data were used. The results of disturbance detection from the airborne 

hyperspectral data were used as reference data for verification of disturbances from satellite 

data. 

2.4. Concept of buffer zones and assessment of spatial patterns 

The correspondence of disturbance identification in both data sources (satellite and airborne) 

can serve as a measure of robustness and reliability of the detection. Because these two 

detections cannot be exactly spatially aligned due to geolocation error in mountainous areas. 

European Space Agency (ESA) reports that in most cases the geolocation error of Sentinel-2 

images is between 7–12 m (Copernicus Service, 2021), but in some cases we found a spatial 

misalignment of 40 m between satellite and airborne detected disturbance on very steep slopes. 

The differences in the spatial resolution or coordination systems of remote sensing data require 

additional transformations before the data can be processed automatically. Each transformation 
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introduces errors into the data, thus increasing its inaccuracy. Therefore, the buffer zones were 

built around each detection source from satellite or aerial hyperspectral data at distances from 

the epicentre. The buffer zones were constructed as a ring-shaped curves around detected 

disturbances at specific distances from 25 to 200 m with the step of 25 m, e.g. buffer zone r = 

50 m refers to the area starting at the boundary of the previous zone (i.e. buffer zone  r = 25 m) 

and extending up to a distance of 50 m from the centre of the disturbance. The forest workers 

in productive forests in Central Europe use the similar strategy to find newly colonized trees by 

bark beetles (Hlásny et al., 2019), most of them are located a few tens of meters from previous 

bark beetle hotspots. 

3. Results 

3.1. Detection of disturbances 

The detection of dead standing trees from the airborne data revealed the total area under 

disturbances reaching 10.05 ha in the sub-area A in 2022, subsequently it almost doubled the 

extent up to 18.84 ha in 2024. Most detections were located on south-oriented slopes within the 

sub-area A in the locality of ‘Koule’ (Fig. 2), where the greatest progression was recorded as 

well. The first disturbances on this site were already spotted by forest workers before the first 

airborne data acquisition (i.e. before 2022) and were related mostly to infestation by spruce 

bark beetles. In contrast to this, the sub-area B contained only a few isolated disturbance spots, 

formed by individual trees or small tree clusters, representing a total area of 0.78 ha in 2022 

and 1.5 ha in 2024. Any larger disturbance in terms of size was not detected by field workers 

before 2022.  

 

In both cases at sub-area A and B, the total area affected by disturbance is underestimated 

because the detection considered only sun-lit parts of forest. It is shown in Fig. 2, where many 

shaded, suppressed or fallen trees were not detected. On narrow roads with forest on both sides, 

some false detections were also recorded, but the number of such false detections is considered 

as negligible. 
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Fig. 2. Detection of disturbances from airborne hyperspectral data at the sub-area A covered 

by airborne images in 2022 (A) and in 2024 (B).  

The satellite detection was based on a DI slope value threshold of 0.5. The choice of this 

threshold was supported by our previous research and other studies (Kupková et al. 2018; 

Mildrexler et al. 2009).  We achieved a high agreement with the airborne detection as is shown 

in Fig. 3 A. The uncertainties and errors in the georeferencing of both satellite and aerial images 

caused spatial shifts between detected disturbance from the two data sources (Fig. 3 A). Rather 

than pixel by pixel comparison, it is more appropriate to build a buffer zone around each 

detection.  

Detection using satellite imagery alone tends to result in more false detections in areas of recent 

clearcutting or areas with low tree density (Fig. 3 B).  Filtering by the precise mask of forest 

height did not suppress the number of false detections, because the background spectral 

reflectance (of dry needles or bare soil) have significantly affected the spectral information in 

the whole pixel or even of the adjacent pixels. The size of the Sentinel-2 pixels did not allow 

detecting small incipient disturbances, especially if they were isolated and more distant from 

already existing disturbances (Fig. 3 B). 
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Fig. 3. Detection of disturbances using satellite (orange colour) and airborne hyperspectral 

(blue colour) data in 2022. The buffer zones were constructed around the detected centres of 

disturbance at distances of 75, 125 m. The detection of disturbances of larger size is shown in 

section A. The false detection of disturbances with standing trees from satellite data and 

omitting disturbances of smaller size in the section B. 

3.2. Spatial progress of disturbances 
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Spatial progress was explored in disturbance epicentre (i.e. airborne detection) and four buffer 

zones around by observing the mean DI slope value (Fig. 4). The highest values of DI slope 

were located in the disturbance epicentre, these values decreased sharply with distance. This 

trend was apparent in all observed periods (i.e. 2017-2022, 2017-2023, and 2017-2024), the 

gradual increase in DI slope values in the centre of disturbance over the time indicated that the 

disturbance has not yet affected the whole area (Fig. 4A). The disturbance continued to spread 

into the surrounding area. This progress is relatively slow and space-limited because it mostly 

affects areas within 750 m (i.e. up to buffer zone r = 750 m) from the disturbance centres (Fig. 

4B). 

 

 

Fig. 4. Development of satellite DI slope values in buffer zones around the disturbance pixels 

detected by airborne hyperspectral data in 2022. (a) Differences between buffer zones in time 

for selected zones, (b) decline of DI with the distance from detected disturbances. 

 

The comparison of initial spots under disturbances in 2022 and newly established spots in 2024 

showed that 88.01 % of new spots were located within a distance of 75 m from initial spots 

(Fig. 5A). The percentage increases slowly with distance, where 92.67% of new disturbances 

were included within a distance of 100 m and 95.24% within a distance of 125 m. The time 

progress of a disturbance also affected the overall percentage, the areas in incipient phase of 

disturbance (sub-area B) showed lower percentages at all distances (i.e. 57.16 % within 75m, 

66.92% within 100 m and 75.98% within 125 m) compared to areas with existing disturbances 

from previous years (sub-area A).  
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The median distance between the new and old disturbance spots for both areas was 25.88 m 

(Fig. 5B), the sub-area A with existing disturbance reaching 22.78 m and the sub-area B with 

disturbance in incipient phase reaching 88.27 m. As the majority of new disturbances were 

detected in sub-area A, which is also larger, the overall results reflected more the situation in 

sub-area A. Even if we considered the most extreme values, the maximum distance exceeded 

250 m in only a few cases at both locations.  

 

Fig. 5. Spatial progress of disturbances detected from airborne hyperspectral data between 

years 2022 and 2024. (A) Cumulative sum of newly detected disturbances (based on 2024 data) 

depending on the distance from the epicentres detected in 2022. (B) Distribution of mean 

distance between epicentres detected in 2022 and newly detected disturbances in 2024. The 

mean distance was computed from the pixel detected as disturbance in 2024 to the 50 nearest 

pixels detected in 2022 (B). 

4. Discussion 

4.1. Detection of disturbances 

The detection of forest disturbance (dead standing trees) based on VNIR airborne data achieved 

overall accuracy of 87% in 2022 and 95% in 2024. Differences in the classification accuracy 

achieved between years can be explained by differences in spatial resolution, the classification 

using data with a spatial resolution of 2 m per pixel tended to result in more false detections 

due to mixed pixels.. Especially where the dead standing trees occurred on bare soil, unpaved 

roads, timber stacks and dead lying wood. Similar accuracies, and also confusion between dead 

standing trees and bare soil related classes was reported by Fassnacht et al. (2014) who used 

support vector machines to classify bark beetle induced tree mortality with airborne 

hyperspectral data in Bavarian Forest National Park. Alternatively, detection of dead standing 



14 
 

trees can be based on the combination of individual tree detection from airborne laser scanning 

data with optical spectral data (Jutras-Perreault et al., 2023). Using this approach might be 

challenging in topographically diverse areas with steep slopes, like our study area is, where 

geolocation errors between airborne laser scanning and optical data can occur. In addition, 

accuracy of individual tree detection can decrease on steep slopes (Khosravipour et al., 2015). 

The classification on merged VNIR and SWIR data did not result in higher accuracy in any 

case, likely because of the larger pixel size of the SWIR data.          

The detection based on satellite data is proven to be an effective tool for mapping forest 

disturbances of a larger size, with the affected area larger than the spatial resolution of one pixel 

(Bárta et al., 2021, Fernandez-Carrillo et al., 2020). The success rate of detecting dead standing 

trees is usually around 90% (Fernandez-Carrillo et al., 2020; Fassnacht et al. 2014). These 

studies investigated detection possibilities in production forests, but their findings should be 

applicable to non-productive forests as well. Because the KRNAP spruce forests are 

characterized by lower tree density, smaller crown size and smaller height, it is assumed that 

the classification accuracy might be slightly lower here. Small incipient disturbances affecting 

a single group of trees were also mostly not captured by satellite data as is shown in Fig. 3B. 

Here, it is more profitable to use sensors with higher spatial resolution mounted on the airborne 

platform of UAV. In any case, the biggest disadvantage of using satellite data for disturbance 

detection is the high number of false detections out of forest areas. To minimize the number of 

false detections, the mask of tree height was used, which decreased the number of false 

detections on the meadow or on in places with rocky background. If the tree height mask was 

not available, it would be replaced by other sources for determining forest boundaries (e.g., 

forest management plan) to reduce false positives associated with non-forest objects.  

Despite the above-mentioned disadvantages, the free availability of Sentinel-2 data, its large 

coverage in a single pass and the frequent revisiting time (every 5 days) makes satellite-based 

detection highly valuable for practical use. Then, the DI slope value-based detection method 

could be used for disturbance detection, from our experience the disturbance-related areas 

correspond to the threshold of 0.5. In another study, Kupková et al.  (2018) reported mean DI 

values around 0.37 in heavily impacted areas during peak disturbance periods in the Ore Mts. 

(Czech Republic), suggesting that a threshold of 0.5 would encompass substantial canopy 

changes. Similarly, a study utilizing MODIS data over forests in North America established a 

65% threshold for instantaneous disturbances monitored using MODIS Global Disturbance 

Index (Mildrexler et al., 2009), which, when normalized, corresponds to a DI value near 0.5. 
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The results of such detection should be verified through field survey observations, and areas 

with a higher risk of disturbance spreading should be intensively monitored by forest workers 

or by airborne or UAVs sensors. 

4.2. Spatial progress 

Buffer zones around each existing disturbance spot were defined to make monitoring of 

disturbance spread more efficient. This approach is based on the assumption that the distance 

from previous-year disturbances is considered as the main factor in determining the risk of 

subsequent tree mortality (Kautz et al., 2011; Potterf et al., 2019). Our results showed that 

progression into the immediate vicinity was also more probable and declined sharply with 

distance (Fig. 4). Potterf et al. (2019), who investigated bark beetle infestation progression in 

northern Slovakia, reported the same findings and stated that decline followed an inverse 

power-law function during peak and decline disturbance phases. In our study, the decline was 

found to slow significantly at a distance of approximately 75 meters on site under progression 

disturbance and 125 meters on site under incipient disturbance, forest stands within distance of 

100m were identified as areas with higher risk of pests’ damage (Kautz et al., 2011; Potterf et 

al., 2019). Kautz et al. (2011) reported that on average 65% of new bark beetle-killed trees were 

placed within a 100 m radius, and 95% trees within 500 m.   Wichmann and Ravn (2001) 

extended this distance up to 500 m and reported that all old attacks are found within 500 m of 

a new attack. Wermelinger (2004) gives a range of 100 - 1500m in his review, but most studies 

after him tend towards the lower end of the range. Stadelmann et al. (2014) reported a distance 

of less than 500 m for new infestation spots, while Lausch et al. (2012) reported a mean distance 

of 116.45 m. The population density of bark beetles, whether endemic or epidemic, affects the 

strategy used to colonise trees, thereby affecting the range of areas at risk (Doležal et al., 2016; 

Hlásny et al., 2019; Wermelinger, 2004). During the endemic phase, the beetles tend to find 

susceptible trees over a wider range; they prefer trees with poor defence mechanisms. 

Meanwhile, during the epidemic phase, they can attack even healthy trees, with a high chance 

of successive attacks. This finding supports studies focusing on the flying capability of bark 

beetles, which reported that the number of marked beetles captured decreased exponentially 

with increasing distance from the release point (Doležal et al., 2016).  The success of bark beetle 

attack depends on many factors, such as tree vigour, spatial distribution of susceptible trees or 

population density (Hlásny et al., 2019). However, it is still not possible to predict future spots 

of infestation (Stereńczak et al., 2014). 
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There is no doubt that the distance gradient depends on the disturbance phase. This was 

demonstrated in sub-areas A and B: sub-area A, being in a peak phase, showed a shorter average 

distance of 22.78 meters between old and new disturbance spots, while sub-area B, which was 

in an emerging phase, exhibited a greater average distance of 88.27 meters between the same 

categories. This is consistent with the findings of other studies, who investigated the disturbance 

progression in natural protected areas (Kautz et al., 2011; Potterf et al., 2019). The disturbance 

progression is undoubtedly influenced by other factors like slope orientation, forest age 

structure, species composition, wind direction or amount of precipitation affecting tree vigour. 

Due to the lack of additional data the small extent of studies areas we have not evaluated the 

influence of those factors. 

5. Conclusion  

In this study we analysed spatial patterns and progress of forest disturbances in a specific forest 

ecosystem - mountain Norway spruce forests in the KRNAP national park in the Czech 

Republic, where standard forest management practices are either very limited or even absent 

compared to typical Central European production spruce forests. The forest disturbances, 

declining and dead standing trees, most likely caused by bark beetle infestation, were analysed 

from airborne hyperspectral data and Sentinel-2 data. We evaluated the spatial progress of 

disturbances between 2022 and 2024 by analysing buffer zones constructed around the 

epicentres of disturbances detected in 2022. The probability of the occurrence of new 

disturbances and progress of the existing ones decreases with the distance from the detected 

disturbances. Both remote sensing data sources confirmed that the buffer zone of up to 125 m 

is the most critical zone to inspect for new or progressing disturbances. In areas where 

disturbances begin, it is necessary to expand this zone up to 200 m to inspect and identify newly 

declining trees in a wider perimeter. The establishing of perimeters could help forest workers 

to plan field surveys in areas with difficult terrain. As a starting point for the creation of these 

buffer zones, a disturbance detection based on satellites, airplanes or UAVs data could be used.  

Despite the fact that the distance of critical zones around existing disturbances corresponds to 

findings of other studies, its range depends on forest distribution in a specific landscape.   
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