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Abstract 

The changes in land cover, particularly in vegetation, directly influence the regional water 

systems through various processes and have potential to alter not only microclimates and 

local hydrological regimes, but also local ecosystems and downstream water resources. This 

study investigates the interplay between land cover change and hydrological processes over a 

30-year period in the mid-latitude mountainous catchment. Key vegetation trends were 

identified by supervised classification of geometrically and radiometrically corrected Landsat 

satellite imagery. Specifically, the replacement of coniferous forests with transitional 

woodland-shrub and a gradual increase in mixed forests, influenced by disturbance events 

such as windthrows and bark beetle outbreaks, were observed. The SWAT model was 

successfully calibrated and validated using long-term discharge data, allowing for the 

simulation of land cover scenarios. Results suggest that land cover changes exerted rather 

limited influence on total water balance, indicating a certain degree of hydrological resilience 

of the catchment. However, they affected the partitioning of runoff components, such as 

direct flow, subsurface lateral flow and groundwater recharge. The study demonstrates the 

value of integrating satellite-based land cover analysis with process-based modelling to 

understand long-term land-hydrology interactions in complex terrain. The findings 

underscore the importance of improving spatial resolution, dynamic vegetation modelling, 

and soil-vegetation parameterization for future assessments under changing environmental 

conditions. This research contributes to a growing body of knowledge essential for 

sustainable water resource management in sensitive mountain regions. 
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1.    Introduction 

In the last six decades, land cover change concerned about one-third of the global land area 

(Winkler et al. 2021). The changes in land cover, particularly in vegetation, directly influence 

the regional water systems through various processes, such as evapotranspiration, 

interception or infiltration (Wang et al. 2018; Chen et al. 2021). This is caused by the role of 

vegetation as an interface between the soil and the atmosphere (Dubbert and Werner 2018). 

These alterations in the hydrological cycle have also profound effects on the surface energy 

balance, carbon cycle and land surface-atmosphere interactions, influencing air temperature 

and precipitation patterns, humidity levels, and surface’s albedo (Meier et al. 2021; Perugini 

et al. 2017). They have potential to alter not only microclimates and local hydrological 

regimes, but also local ecosystems and downstream water resources. 

A wide range of remote sensing and GIS-based techniques are used to analyze land cover 

change, enabling the assessment of spatial and temporal dynamics in vegetation cover 

(Feranec et al. 2014, 2016; Ramon et al. 2020; Kupková et al. 2021, 2023). One of the most 

common approaches is the classification of multi-temporal satellite imagery, such as Landsat 

or Sentinel-2, which allows for the detection of land cover transitions over decades (Kupková 

et al. 2018, Chaves et al. 2020). Change detection methods, including supervised 

classification, vegetation indices (e.g., NDVI, EVI, DI, forest z-score), and machine learning 

algorithms, are commonly applied to quantify deforestation, afforestation, or shifts in 

vegetation structure (Haeley et al. 2005, Huang et al. 2010, Talukdar et al. 2020, Gao et al. 

2020).  

As land cover affects the hydrological cycle in numerous ways, it is vital to analyze the land 

coverage by particular vegetation types. Forested areas use significant amount of water for 

transpiration (Jasechko et al. 2013; Sutanto et al. 2014) and a notable part of precipitation is 

not reaching the soil surface due to interception (Kofroňová et al. 2021). Infiltration from 

precipitation is in the forest also increased due to root growth and organic matter, enhancing 

the soil’s ability to absorb and retain water (Alaoui et al. 2011; Archer et al. 2015) compared 

to urban or agricultural lands, affecting the flow regimes of rivers and streams (Yang et al. 

2011). In contrast, meadows and urban areas have markedly different impacts on the 

hydrological cycle.  Meadows, with their lower vegetation height and density, tend to have 

higher surface runoff (Blackburn et al. 2021) and less transpiration compared to forests 

(Pielke et al. 1998). Water table height in montane meadows determines their potential to be 

a large carbon sequestration sink in the context of changing hydroclimates and different land 

management decisions impacting meadow hydrology (Blackburn et al. 2021). Agricultural or 

urban areas, characterized by less permeable or impervious surfaces, dramatically reduce 



 

infiltration and increase surface runoff, leading to higher peak flows in urban streams and 

rivers (Sieker 2000; Blöschl 2022). 

To predict the effects of land cover changes on the hydrological regime, hydrological models 

serve as valuable tools for managing water resources more effectively (Mensah et al. 2022). 

Numerous studies have utilized hydrological models to simulate the impacts of deforestation 

(Danáčová et al. 2020), afforestation (Sonnenborg et al. 2017), urbanization (Trinh and Chui 

2013), and other land cover changes on various components of the hydrological cycle, such 

as stream flow (Cognard-Plancq et al. 2001), evapotranspiration (Launiainen et al. 2019), and 

groundwater recharge (Sonnenborg et al. 2017). However, the correct representation and 

parametrization of land cover in hydrological models is crucial for predicting hydrological 

responses to environmental changes. Inaccurate representation of land cover can lead to 

significant errors in model outputs (Yu et al. 2016).  

In this study, we therefore combine a detailed analysis of landcover change over 30 years 

with a modelled catchment water balance. The selected study area is a forested mountain 

basin in the Krkonoše Mountains, Czechia. Our goal is to contribute to the understanding of 

the complex interactions between land use changes and the hydrological cycle. The specific 

aims of this study are: (1) quantification of land cover change in mid-latitude mountainous 

catchment over 30 years, (2) correct representation of the catchment water balance using a 

semi-distributed model, and (3) assessing the influence of time-varying land cover on the 

hydrological response, including two scenarios - afforestation and deforestation of the 

catchment. 

 

2.    Experimental area and methods 

 2.1 Experimental area 

The Horní Úpa catchment is situated in the headwaters of the Krkonoše Mountains in the 

Czechia, Central Europe, covering an area of 82 km² (Fig. 1). The experimental area is a part 

of the KRNAP National Park. The altitude ranges from 600 to 1,600 meters above sea level. 

The region is part of the Lugicum unit of the Bohemian Massif and is primarily composed of 

metamorphic gneisses and schists with granite intrusions. Hydrogeologically, it is classified 

as a hard rock system (Lachassagne et al. 2011). The area is predominantly covered by 

shallow soils, namely crypto-podzols, podzols, rankers or cambisols. Forests and transitional 

forest zones dominate over 80% of the catchment, with coniferous species, particularly 

spruce, comprising 89% of the forest cover.  

According to the Köppen climate classification, the catchment falls within the subarctic (Dfc) 

climate zone, with coldest month below 0 °C and 1–3 months averaging above 10 °C 

characterized by warm summers and relatively evenly distributed precipitation (Tolasz 2007). 



 

From 1990 to 2023, observations at the Pec pod Sněžkou meteorological station recorded an 

average annual air temperature of 5.4 °C and an average annual rainfall of 1,319 mm. The 

annual runoff height from the catchment is approximately 920 mm, representing ~70% of the 

total precipitation.  

2.2 Land cover data 

A 30-year time series of land cover in the Horní Úpa catchment was derived by supervised 

classification of geometrically and radiometrically corrected Landsat satellite imagery (L2 

processing level, surface reflectance) acquired by the Thematic Mapper (TM), Enhanced 

Thematic Mapper + (ETM+) and Operational Land Imager (OLI) sensors. Due to the frequent 

occurrence of cloud cover in this area, cloud-free mosaics were first created by setting an 

optimized percentile of the valid pixel values of all available imagery within each growing 

season (day of year (DOY) 150–270). The quality band of the L2 product was used to select 

invalid pixels, i.e., pixels with cloud cover or obscured by cloud cover, pixels out of 

radiometer range, etc. (Zhu and Woodcock 2014). Years in which it was not possible to 

derive a cloud-free mosaic were omitted or replaced by a two- or three-year composite if the 

gap was greater than one year. For the given period 1991 to 2022, 23 datasets were created 

(Table 1). 

 

Fig. 1 Overview of the soil types distribution at the Horní Úpa catchment. 

Tab. 1 Data sources for land cover analysis. The years where it was possible to produce 

annual cloud-free mosaics of satellite data are indicated by crosses on green shading. Orange 

shading marks the periods when a two- or three-year composite was used (from the DOY 

150–270 imagery only). Percentile L5/L8 is equal to the threshold used for creating the 

cloud-free composite. The availability of aerial imagery used for training data collection is 

indicated by crosses in the AO column. 

Year  Landsat sensor AO  Year  Landsat sensor Percentil  AO 



 

L5/TM L7/ETM+ L8/OLI 
Percentil 

L5/L8  
L5/TM L7/ETM+ L8/OLI 

L5/L8 

1991 x     40    2007 x     40 x 

1992 
x     50 

   2008           

1993    2009 x     40   

1994 x     40    2010 x     40 x 

1995 x     40    2011 x     40 x 

1996            2012           

1997 x     40 x  2013     

x 50 

  

1998            2014     x 

1999 x x   60    2015       

2000 x x   40 x  2016     
x 50 

x 

2001 x x   40 x  2017       

2002 x x   60    2018     x 50 x 

2003 x     40    2019     x 50   

2004 x     40 x  2020     x 50 x 

2005 x     40 x  2021           

2006 x x   50    2022     x 50 x 

 

Tab. 2 Classified land cover classes for the SWAT hydrological model 

Land cover class SWAT code 

Artificial surfaces (urban, road network) URBN 

Meadows and pastures PAST 

Broad-leaved forest FRSD 

Coniferous forest FRSE 

Dead coniferous forest BSVG 

Mixed forest FRST 

Transitional woodlands and shrubs SHRB 

Forest clearings and sparsely vegetated areas BSVG 

Dwarf pine shrubs SBRB 

Peat bogs MIGM 

Rocks BARR 

Water bodies and water courses WATR 

The resulting cloud-free mosaic contained six spectral bands of a given sensor, covering the 

visible, near, and mid-infrared parts of the spectrum, and calculated spectral indices suitable 

for monitoring vegetation condition - normalized difference vegetation index, normalized 

difference infrared index, normalized burn ratio, greenness, brightness and wetness of the 

Tasselled Cap (TC) transform (Crist and Cicone 1984). For the TC calculation, images 

containing the reflectance at the top of the atmosphere and the coefficients from Crist and 

Cicone (1984) for Landsat 5 and Baig et al. (2014) for Landsat 8 were used. Elevations from 

the SRTM model were added as an additional layer. Processing was automated using the 



 

Google Earth Engine and the provided online access to the Landsat Collection 2 data (pre-

processed by the US Geological Survey Earth Resources Observation and Science Center).  

The landcover classes correspond to the catchment conditions and to the requirements of the 

SWAT hydrological model. Overall, we used 12 land cover classes (see Table 2). A 

supervised approach was chosen for classification (Zagajewski et al. 2021; Potůčková et al. 

2021). The collection of training sets since 1997 was done by visual interpretation of 

available colour (RGB or CIR) orthophotos with a spatial resolution of 0.2 to 0.5 m in 

combination with Landsat data. The orthophotos provided by the Krkonoše National Park 

Administration and the Czech Office for Surveying, Mapping and Cadastre were available 

online as Web Map Services (KRNAP 2025; ČÚZK 2025). In addition, a normalised digital 

surface model (nDSM) derived from airborne laser scanning was provided by the Krkonoše 

National Park Administration for the years 2018 and 2022 (KRNAP 2025) and was used to 

discriminate the transitional woodlands and coniferous forest in training data. In 2022, a field 

survey was conducted to refine some categories (especially transitional woodlands). For the 

1991, 1992, and 1994 imagery, training sets were collected by interpretation of Landsat 

imagery only. The buildings and roads class were generated from OpenStreetMap (as 

downloaded on January 28, 2023) and used for all time horizons. The area is located in the 

highly protected zone of the national park and new constructions are therefore minimal. 

Similarly, the water class, which consists of only a few pixels in the 30 m resolution Landsat 

data, was vectorized over the orthophoto and included in the final classification.  

The Random Trees algorithm, as implemented in ArcGIS Desktop v10 (Breiman 2001), was 

used for the classification. It is a non-parametric, robust classifier that can be applied to data 

of different scales. It provides information about the importance of each predictor. Moreover, 

the amount of training data required is smaller than for convolutional neural networks. 

Reflectivity values in six spectral bands, spectral indices, and height were used as features for 

classification, as mentioned above. Based on the tests performed, the classifier parameters 

were set to 300 trees and a maximum tree depth of 60. 

To suppress random noise caused by the input data (radiometric values, training data), the 

following post-classification processing was carried out. First, we applied a majority filter to 

each single classification to remove pixels with a different class within or at the edge of 

homogeneous regions. Then, we defined a minimum classification mapping unit (1x 2 

pixels), and finally smoothed the time series (i.e., removed unrealistic changes in land cover 

within the time series). 

After post-processing, the resulting 12 land cover layers were the basis for further analyses. 

Classification accuracy was assessed based on stratified random sampling of 1500 points at 

the 95% two-sided confidence level (Foody, 2009). Classification classes were assigned to 



 

validation points based on orthophoto interpretation; 94 of these points were validated in the 

field in 2022. Due to the time cost associated with the number of validation points and lack of 

aerial orthoimages in the 1990s, validation was only performed in 5 time-horizons (2001, 

2010, 2016, 2018, 2022). A standard error of the area determined for each class could be 

estimated, based on Olofsson et al. (2014). 

 

2.3 The SWAT hydrological model 

2.3.1 The SWAT model fundamentals 

The SWAT model used in the study is a comprehensive basin-scale, continuous-time model 

(Arnold et al. 2012). As a semi-distributed model, SWAT provides a high level of spatial 

discretization by dividing the original catchment into multiple subbasins. Subbasins are 

further subdivided into series of hydrological response units – i. e. hydrotope (HRUs), which 

represent unique combinations of slope, land use, and soil type. 

The main components of the model are the modules of direct runoff (SURQ), 

evapotranspiration, soil water infiltration, subsurface lateral runoff (LATQ), groundwater 

runoff (shallow and deep aquifer) (GWQ), water reservoirs, nutrients, bacteria and others. 

Most of the above components are calculated separately for each HRU in a daily step. In the 

evapotranspiration section, the water retained by interception is estimated first for a given 

land cover category. The Priestley-Taylor method (Priestley and Taylor 1972) was chosen for 

the estimation of potential evapotranspiration. Actual evapotranspiration is then determined 

separately for soil and plants using the approach of Ritchie (1972).  

2.3.2 Required input data 

 SWAT requires the following spatially distributed inputs for model building: a digital 

elevation model (DEM), soil type, and land use layers. The DEM from the Shuttle Radar 

Topography Mission (SRTM) at a spatial resolution of 30x30 m was used. The soil type map 

was obtained from the Soil Subtypes Map of the Czech part of the Elbe Basin, created by 

Němečková (2008).  

The SWAT model requires daily climate data, including minimum and maximum air 

temperatures (TMP), precipitation (PCP), average wind speed (WIN), solar radiation (SOL) 

and relative humidity (HUM). Meteorological observations covering the period from 1990 to 

2019 were obtained from five meteorological stations (Fig. 1) from the Czech 

Hydrometeorological Institute. SWAT assigns meteorological data from the closest station to 

the central point of the subbasin. Each subbasin was then divided into several elevation bands 

spanning for 100 m. For each elevation band, the correction for the average observed 

elevation gradient was applied both for air temperatures and precipitations. 

2.3.3 Modelling procedure 



 

The SWAT model was calibrated at the beginning of the period of available data using the 

corresponding land cover. Calibration and validation were conducted using the SWAT-CUP 

2012 software (Abbaspour 2013) in combination with the Sequential Uncertainty Fitting 2 

(SUFI-2) optimization algorithm. Performance evaluation of the best-fit simulations included 

objective functions such as percent bias (PBIAS) and Nash-Sutcliffe efficiency (NSE). For 

further information on these objective functions, refer to Moriasi et al. (2007). 

Further several distinct land cover maps were designed for the assessment of land cover 

influence on catchment rainfall-runoff relationship and water balance. The specific land cover 

maps corresponded to documented differences in aerial representation of particular land-

covers. In order to eliminate the influence of different climatic conditions on the modelling 

results the model was run separately for every land-cover set-up using the entire period of 

meteorological data 1991–2021, so that the runoff characteristics can be assessed using 

exactly the same meteorological data and not only the ones present in the period of land-

cover. Altogether four land cover set-ups were assessed (thoroughly described in section 3.2) 

representing four land cover set-ups and both catchment water balance as well as the rainfall-

runoff. The four land cover set-ups are denoted as LU1991, LU 2005, LU2011 and LU2022 

always representing the land cover from particular year. 

Finally, two extreme land cover scenarios were submitted to the hydrological model in order 

to check the sensitivity of the model results to pronounced changes in the land cover. In the 

first scenario, all areas originally attributed to transitional woodlands and shrubs and dwarf 

pine shrubs categories were altered to coniferous forest representing the gradual afforestation 

of the area induced by climate change. And in the second scenario, all coniferous forests were 

turned into transitional woodlands and shrubs, which may occur due to a bark beetle outbreak 

in the area. 

 

3. Results 

3.1 Calibration of the SWAT model 

The hydrological model SWAT was calibrated in the period of 1993–1997. This period 

contains both wet (1995, 1997), dry (1996) and average years (1993, 1994) as recommended 

by Moriasi et al. (2007). The first two years of the available data were used as model warm-

up. A total of 15 parameters were selected for the one-at-time sensitivity analysis. The 

selection of the parameters was based on a literature review on the application of SWAT 

models in streamflow and soil water calibration (Abbaspour 2015).  

Within the calibration period, Nash-Suctliffe coefficient value of 0.47 was achieved for Horní 

Úpa watershed. In the validation period, the coefficient value was 0.50. The values of the 

Nash-Sutcliffe coefficient are satisfactory according to Moriasi et al. (2007), although there 



 

are at the lower acceptable margin. Largest discrepancies between modelled and observed 

discharges were found for winter and spring periods due to the uncertain estimation of snow 

accumulation and snow melt in particular dormant seasons. The Nash-Sutcliffe coefficient 

ranged from 0.22 in the worst-performing year (2012) to 0.76 in the best-performing 

simulation year (2007). The catchment water balance is correctly simulated as simulated 

runoff equaled to 98.9% of the observed one in the entire period of 31 simulated years. Only 

20% (calibration) and 18% (validation) of the measured data were not enclosed by the 95PPU 

band. 

3.2   Land cover characteristics 

3.2.1 Classification accuracy 

The assessment of land cover change was preceded by an analysis of the classification 

accuracy achieved in five time-horizons according to the methodology procedure outlined at 

the end of Section 2.2. The hydrological analysis focused on seven vegetation categories (i.e., 

grassland, coniferous, mixed, and broad-leaved forest, transitional woodlands, dwarf pine 

shrubs, clearings and areas with sparse vegetation) and rocks. As the classes of built-up and 

water areas were not of interest and were masked for the classifications, they were not 

included in the accuracy assessment. Table 3 shows that the overall classification accuracy 

was between 70 and 80%. Mixed and broad-leaved forest proved to be the most problematic 

categories, with both confusion between these two categories and confusion between mixed 

and coniferous forest and transitional woodlands. For each validation dataset, the area 

standard error was estimated for each class (Olofsson et al. 2014). The median of standard 

error calculated from the five validation observations was used as the best estimate of the 

achievable accuracy of area determination for a given category. Based on this, the 

significance of the difference in area of a given category between two consecutive time 

horizons was assessed using a 95% confidence interval. Significant changes are highlighted 

in Table 4. In general, the number of significant changes was low, with the most pronounced 

ones observed between 1992 and 1994 and between 2002 and 2003. 

 

Tab. 3 Classification accuracy expressed in terms of F1-score and overall accuracy (OA) is 

based on 1,500 validation points obtained by visual interpretation of RGB and CIR aerial 

orthophotos with a spatial resolution of 0.2 m to 0.5 m 

  Landsat 8 Landsat 5 

  2022 2018 2016 2010 2001 

  F1-score 

Meadows, pastures 0.91 0.83 0.89 0.86 0.75 

Broad-leaved forest 0.53 0.56 0.73 0.60 0.56 

Coniferous forest 0.89 0.88 0.89 0.80 0.92 



 

Dead coniferous forest 0.75 0.56 0.71 - - 

Mixed forest 0.57 0.53 0.61 0.42 0.43 

Transitional woodlands, 

shrubs 
0.77 0.75 0.76 0.64 0.65 

Clearings, sparsely 

vegetated areas 
0.78 0.55 0.71 0.39 0.42 

Dwarf pine shrubs 0.91 0.80 0.82 0.82 0.72 

Peat bogs 0.98 0.93 0.85 0.68 0.83 

Rocks 0.84 0.82 0.79 0.91 0.77 

Overall Accuracy 

OA 0.82 0.78 0.81 0.70 0.70 

 

 

3.2.2 Land cover change 

The result of the land cover classification from Landsat satellite data in the initial reference 

year 1991 and final year 2022 is shown in Figure 2. Based on the classification, the area of 

each land cover class was calculated for each time horizon, see Table 4. According to the 

average values for the whole study period, coniferous forests (39%), transitional woodlands 

(29%) and meadows (10%) represent the highest proportion of the total classified area. The 

categories with a representation of less than 1% are peat bogs, water, and dead coniferous 

forest. 

 

Fig. 2 Land cover classification from satellite images acquired by TM mapper and OLI 

sensors from Landsat 5 and Landsat 8 satellites, respectively, at the beginning and the end of 

the observed period (1991–2022).  



 

 

Changes in land cover categories within the time series can be used to express the dynamics 

of the development dynamics of the studied area of interest. The spatial distribution of pixels 

with unchanged categories throughout the time series, i.e., stable areas, and conversely, the 

number of changes in each pixel, is shown in Figure 3. Stable areas represent 42.7% of the 

area of interest. The proportion of stable forest categories in the total area of the study 

catchment is as follows: deciduous forest 0.6%, mixed forest 0.2%, coniferous forest 20.4%, 

transitional woodlands 6.5%. Moreover, a detailed study of changes revealed that on 6.5% of 

the area, the change between matured deciduous, coniferous, and mixed forest categories 

occurred twice or more times. Similarly, pixels with repeated occurrences of dwarf pine 

shrubs, which do not belong to categories with high dynamics, represent 6.8% of the area. 

Such ‘changes’ indicate higher uncertainty in class distinction between the categories and 

may be attributed to classification inaccuracy rather than real change. 

 

 

 

Fig. 3 Map of stable areas in Horní Úpa based on the classification of the satellite image time 

series between 1991 and 2022 (a). Pixels whose class has not changed over the entire time 

series are marked as stable. The number of land cover changes (variety) in a given pixel 

reflecting the dynamics of the area (b). 

Breakpoints in the time series of the calculated areas of each category were sought. Figure 4 

depicts an example of the two most represented categories, coniferous trees and transitional 

woodlands. For coniferous trees and transitional woodlands, the most significant breaks in the 

time series occurred in 1995, 2001, and around 2005. The period between 1991 and 2005 is 

characterised by forest maturation, when the area of coniferous forest increased from its 

minimum (30 km2) to its maximum (39 km2), while the area of transitional forest decreased 

from its maximum (34 km2) to its minimum (23 km2). These trends changed after 2005. Since 

2011 there has been no significant change. Both categories tend to decrease slightly. Based 



 

on this analysis four land covers maps were designed representing the land cover form the 

year 1991, 2005, 2011 and 2022 (denoted as LU1991, LU2005, LU2011 and LU2022). 

 

 

Fig. 4 Result of piecewise regression (red line) on the time series of the area calculated from 

Landsat image classification for the categories coniferous forest (a) and transitional 

woodlands (b). The main breakpoints are represented by the years 1995, 2001, and 2005 (or 

2006 for the coniferous forest). 



 

Tab. 4 Area of sub-categories based on land cover classification from Landsat data. The green and red colors highlight the maximum and minimum values for 1 

a given category. Orange shading indicates years with a change in the area of a given category above the 95% confidence interval (based on the median of 2 

standard errors shown in Appendix A1). For abbreviations of the land cover classes see Table 2 3 

 Area [km2] 

 1991 1992 1994 1995 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2009 2010 2011 2014 2016 2018 2019 2020 2022 
Medi

an 
STD 

URBN 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 4.23 0.00 

PAST 
12.7

1 

12.9

0 

10.7

7 

10.7

5 

11.0

9 

11.9

5 

11.2

6 

10.8

6 

10.9

3 
8.84 8.58 8.35 8.43 9.06 9.24 8.10 7.84 8.42 8.36 7.71 7.52 7.86 8.25 8.84 1.69 

FRSD 1.84 1.73 1.44 1.44 1.63 1.70 1.48 1.54 1.76 2.54 2.86 2.76 2.05 2.08 2.16 2.12 2.27 1.80 2.03 2.42 1.95 2.41 2.22 2.03 0.41 

FRSE 
30.0

4 

31.1

2 

36.7

7 

37.7

9 

36.4

1 

35.3

6 

35.4

1 

35.0

4 

34.7

9 

36.8

7 

37.3

6 

38.1

1 

39.0

9 

38.1

9 

38.0

3 

37.2

0 

37.0

3 

37.2

6 

36.6

2 

37.0

8 

35.9

5 

36.9

6 

36.5

3 

36.8

7 
2.10 

BSVG                  0.24 0.63 0.50 0.77 0.80 1.10 0.70 0.29 

FRST 0.37 0.46 2.19 2.31 2.34 2.87 3.39 3.81 4.26 7.53 8.06 8.66 6.56 6.02 5.29 4.76 4.43 5.97 6.82 5.41 4.47 5.23 5.96 4.76 2.23 

SHRB 
34.4

5 

33.7

1 

28.7

7 

27.3

8 

27.6

4 

27.6

0 

27.8

0 

28.1

4 

27.4

1 

24.6

5 

23.7

7 

22.7

7 

23.6

8 

24.6

3 

25.2

2 

26.7

2 

27.9

3 

28.2

2 

26.7

0 

26.1

8 

28.7

8 

26.7

4 

26.7

2 

27.3

8 
2.75 

BSVG 3.38 2.89 2.03 2.39 3.03 2.51 2.28 2.41 2.44 2.88 2.69 2.50 2.19 2.21 2.37 3.58 2.95 0.35 1.10 2.73 2.64 1.99 1.68 2.44 0.69 

SBRB 4.97 5.11 5.90 5.76 5.61 5.77 6.16 5.96 6.09 4.67 4.71 4.86 5.94 5.84 5.72 5.53 5.36 5.81 5.78 5.87 5.79 5.92 5.42 5.77 0.44 

MIGM 0.13 0.14 0.15 0.18 0.22 0.23 0.22 0.22 0.24 0.17 0.18 0.18 0.23 0.23 0.24 0.20 0.22 0.24 0.25 0.27 0.26 0.24 0.26 0.22 0.04 

BARR 1.58 1.41 1.45 1.47 1.50 1.49 1.46 1.48 1.56 1.31 1.26 1.28 1.30 1.20 1.20 1.24 1.43 1.16 1.18 1.30 1.33 1.31 1.32 1.32 0.13 

WATR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 
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3.3. Influence of land cover change on water budget and runoff 

The following part is split into the assessment of evaluation of the gradual change of land 

cover on the hydrological regime of the Horní Úpa catchment and the water balance in 

hydrotopes covered with specific land cover. 

 

3.3.1.        Influence of land cover change on catchment runoff 

The prominent source of information about land cover change influence on the catchment 

runoff characteristics are measured values of runoff in combination with precipitation sums. 

Hence first, the relationship between measured discharge and precipitation sums was 

analyzed by means of the double mass curve (Fig 5a). The curve demonstrates the stationary 

relationship between two observed variables from 1990 to 2014. After this breakpoint, less 

runoff was observed in comparison with precipitation sums. However, this was most 

probably caused by the occurrence of severe precipitation deficit during the drought period of 

2014–2019 than by the changes in land cover. As mentioned in section 3.2, the most 

pronounced changes in land cover occurred from 1991 to 2005 and from 2005 to 2011. Since 

2011 the spatial extent of particular land cover categories remained stable.  

 

Fig. 5 Double mass curve and the ratio of direct (a), lateral subsurface and groundwater 

runoff in the period of 1991–2021 for all four land covers (b). 

 

The documented change of land cover had only minor effect also on the modelled discharges 

as the long-term modelled average discharge differed only up to 3% among particular land 

cover set-ups. The only visible difference was that with increasing area covered with forest, 

more lateral subsurface and groundwater flow was produced at the expense of surface runoff. 

This was the case of set up representing the land cover from 2005 and 2011. However, the 

differences were up to 1.2% of the total runoff volume, hence statistically not significant 

(Fig. 5b). Nevertheless, the smaller extent of forest led to higher peak runoffs in a number of 

events (>25 m3.s-1). 

 



 

 3.3.2.     Land cover influence on water balance 

Most pronounced differences among investigated land covers were in terms of water partition 

in the soil profile into direct runoff, subsurface lateral flow and groundwater recharge with 

subsequent formation of groundwater contribution to streamflow. The differences in the rate 

of evapotranspiration were not statistically significant and merely not observable. This is 

given by the fact that under current climate conditions the mountainous regions are still 

energy limited in terms of evapotranspiration demand (Zelíková et al. 2025). 

The fast direct runoff (SURQ) was highest (>600 mm.y-1) in hydrotopes not covered by 

vegetation (BARR). Compared to all other land covers, it formed on average 2-3x more 

runoff. The lowest values of SRUQ were modelled from the forested areas (220-300 mm.y-1). 

The average differences among forest types were at maximum 80 mm.year-1. Among all three 

forest types, the highest SURQ was observed in deciduous forests and the lowest in mixed 

forests. All other land covers comprising pastures (PAST) and land with shrubs (SHRB) or 

sparse vegetation (BSVG) attained higher long-term averages of SURQ of 413, 326 and 349 

mm.year-1, respectively. The differences were more pronounced both in above-average wet 

and above-average dry years with dry years being most variable. SURQ was observed 

significantly more in winter months, only in the case of BARR there is no difference between 

summer and winter season (Fig. 6). 

 

Fig. 6 Monthly sums of investigated water fluxes (SURQ, LATQ, GWQ in rows) in 1991–

2021 for all hydrotopes divided according land cover categories (shortcuts explained in Table 

2). The first column: annual sums, the second column: sums for summer (orange) and winter 



 

(blue), the third column: a 3-year period of wet (blue) (2000–2002) and dry (orange) (2014–

2016) years. 

 

 

Fig. 7 Results of the Kruskal-Wallis test across all landcovers and inspected seasons. Crosses 

indicate significantly different means (at the 5%, 2,5% and 1% significance level) and 

colours indicate the strength of a relationship. 

 

On the other hand, the lateral subsurface flow (LATQ) was formed at highest rate in forested 

hydrotopes forming average annual values of runoff from 450 to 550 mm.y-1. The highest 

LATQ was on average formed in mixed forest (554 mm.year-1), followed by deciduous forest 

(477 mm.year-1) and finally the less prone was evergreen forest (438 mm.year-1). Apart from 

forested hydrotopes, LATQ formation ranged between 300 and 400 mm.y-1 in pasture, 

shrubland and sparse vegetation covered hydrotopes. LATQ from pasture and shrubland 

covered hydrotopes statistically differ from the rest. Areas covered by sole bare land attained 

significantly less LATQ (<150 mm.y-1) as the soil profile is the shallowest. There are no 

profound changes in the described pattern in wet and dry periods (Fig. 6), only the values of 

LATQ are higher or lower. In summer season, the differences among hydrotopes with 

particular landcover were not statistically significant. In winter, only the deciduous forest 

significantly differed from other forest types and less vegetated surfaces (Fig. 7). 

 



 

  

Fig. 8 Monthly average contributions to total runoff for hydrotopes covered by all seven 

inspected landcovers (indexes explained in Table 2). Obtained as an average from the SWAT 

model simulation in 1991–2021. GWQ, LATQ and SURQ represent groundwater, subsurface 

lateral and direct flow. 

 

The average annual values of groundwater contribution to runoff (GWQ) ranged from 179 

mm.y-1 in the hydrotopes without vegetation cover to 289 mm.y-1 in the hydrotopes with 

sparse vegetation. Vegetated hydrotopes (PAST, SHRUB, FRSD, FRSE) attained average 

annual rates of groundwater flow from 241 to 260 mm.y-1. Lower rate of groundwater flow 

was modelled for the mixed forest hydrotopes (197 mm.y-1) as lateral subsurface flow was 

estimated to be the major flow pathway. All forested sites differed significantly from each 

other. Similarly, as for the LATQ, the same pattern of GWQ rates was observed among 

hydrotopes with particular land cover for summer periods and little less differences in winter 

period. The same applies for the dry and wet years, respectively. 

The long-term average contributions of all three types of runoff for particular land covers are 

shown in Fig. 8. It demonstrates that in hydrotopes covered by bare soil, the direct runoff 

formed 63% of total runoff on average and this percentage was stable over the course of the 

year. Only 13% of runoff was modelled to be formed by lateral subsurface flow and less than 



 

25% by the groundwater contribution. In the hydrotopes covered by sparse vegetation, the 

average contribution of all runoff types was merely equal (33% SURQ, 33% LATQ, 34% 

GWQ) with surface runoff dominating in the winter and equal contribution of direct and 

lateral flow in summer (~45%). The prevailing winter role of surface runoff was observed in 

all inspected hydrotopes documented by a distinct group of circles (December to April) in the 

right-hand side of the triangle plots (Fig. 8). This is given by the saturated soil in this period 

resulting in propensity of melt/rainwater to flow over soil surface or through the soil profile 

using shallow lateral pathways. In areas covered by shrubs and pastures, the lateral flow 

dominated summer runoff (~45%) with groundwater flow forming 30‒40%. Lateral flow was 

on average highest in forest-covered hydrotopes (>45%), especially in mixed forests where it 

attained 56.5% of total runoff on average. The groundwater contribution in the forested sites 

ranged from 22.2% (FRST), over 25.8% (FRSD) to 30.5% (FRSE). Direct flow was least 

prominent in the forest-covered sites contributing up to 10% of runoff in summer. In summer 

months, mixed forests differed from evergreen and deciduous ones by higher contribution of 

lateral subsurface flow (groundwater flow at the expense of direct (up to 5%) and 

groundwater flow contributions. 

 

3.3.3 Influence of two extreme land cover scenarios on catchment water balance  

Deforestation represented by the change of all areas covered by conifer forest to transitional 

woodlands and shrubs led to slightly higher peak discharges and faster recession to baseflow. 

On average, twenty peak discharges were higher by 6.6%. The total runoff volume increased 

only by 2.7% compared to the reference scenario which was represented by the land cover 

from 1991. The surface runoff contribution to total runoff increased by 4.1% on average 

(1991-2021) at the expense of lateral subsurface runoff and groundwater runoff contributions, 

which decreased by 4.0% and 0.6%, respectively. Contrarily afforestation of the transitional 

areas led to slightly lower peak discharges and non-detectable changes in the recession limb 

of the hydrographs. The average decrease of the twenty peak discharges was 0.8%. Surface 

runoff decreased by 1.8% on average and it was compensated by the increase of groundwater 

contribution to runoff. The total runoff volume increased by 2.7% when the area was 

deforested and decreased by 0.8% when it was afforested. The overall influence of forest 

thinning and contrarily afforestation of all transitional woodlands and shrubs led only to 

minor changes in runoff volumes, timing and other runoff characteristics.  

 

4. Discussion 

4.1 Land cover classification 



 

The Landsat data classification showed that at least 42.7% of the area of interest remained 

stable between 1991 and 2022. Although the overall accuracy for selected time horizons was 

only 70–80%, it is comparable to other studies that used Landsat data to quantify changes in 

different temperate forest types (Griffiths et al. 2014; Zagajewski et al. 2021) or forest 

disturbances (Senf et al. 2017) over decades. However, so far the Landsat archive is the only 

one that can provide consistent multispectral data continuously for such a long period. 

Analysis of the time series of areas derived from the classification of each category revealed 

significant breakpoints in 1995, 2001, 2005, and 2011. Communication with experts from the 

KRNAP National Park Administration confirmed the observed changes in coniferous forest. 

Its increase from 1991, the beginning of the observation period, to 1995 can be attributed to 

the growth of forest plantations following extensive damage to Norway spruce stands in 

connection with huge immission loads in the 1980s (Vacek et al. 1999). The slight decline 

from 1997 onwards was due to damages caused by icing. After a period of recovery between 

2001 and 2006, the cyclonic storm Kyrill in 2007 followed by repeated bark beetle outbreaks, 

are the main factors for the subsequent decline of coniferous forest in the studied catchment 

(ÚHÚL 2022). 

In central European mountainous environments such as the Krkonoše Mts., the Krušné 

Mountains or the Tatra Mountains, land cover changes have been extensively studied, 

particularly in relation to the decline of spruce-dominated forests due to air pollution, bark 

beetle outbreaks and wind disturbances (Zagajewski et al. 2021, Kupková et al. 2018). The 

expansion of subalpine shrubland and secondary succession in formerly forested areas has 

been documented through remote sensing analysis, highlighting the influence of climate 

change and disturbance regimes on vegetation dynamics (Arekhi et al. 2018, Mašek et al. 

2023). Additionally, historical aerial imagery has been used to reconstruct long-term land 

cover trajectories, revealing for example shrub encroachment due to artificial planting of the 

dwarf pine in the past as well as the cessation of former farming and, most probably, also by 

global change in the KRNAP National Park (Potůčková et al. 2021).  

 

4.2 Input data and hydrological modelling 

The input data and the performance of the hydrological model are subject to various 

uncertainties. One major source of bias is the underestimation of precipitation when using 

standard rain gauges. This occurs because rain gauge measurements often contain significant 

errors, particularly during the winter months (Dingman 2015). Even after corrections, the 

accuracy of winter precipitation estimates remains uncertain (error up to 40% precipitation 

volume), as measuring precipitation in mountainous regions involves several challenges and 

limitations (Sevruk 2005). 



 

The hydrological SWAT was chosen as a modelling tool as it is commonly used for the 

assessment of land cover change influence on the hydrological regime (Siqueira et al. 2021; 

Valencia et al. 2024). The primary limitation in the model's performance stemmed from the 

snowmelt and snow accumulation/melt routine, which relied on the degree-day approach. 

However, it was documented that the degree-day approach proved to be the second-best 

choice (radiation balance approach was not chosen as the data were not available) for the 

modelling of snowmelt dynamics in Central Europe (Girons Lopez et al., 2020). The 

representation of particular processes representing the evaporation from the catchment also 

contains several crucial simplifications that do not take into account the non-stationary 

character of rainfall interception in the mountainous regions (Kofroňová et al., 2021), the 

differences in physiological response of different vegetation to drought-stress (Gebhardt et al. 

2023) or forest floor evaporation (Floriancic et al. 2023). All these model simplifications can 

cause less pronounced effect of land cover change on hydrological régime of the area (Fatichi 

et al. 2016). Hence, the results of such studies represent the lower boundary of future possible 

development. 

 

4.3 The influence of land cover change on the hydrological regime 

The observed changes of land cover in Upper Úpa catchment did not cause any significant 

alternation of the hydrological regime. However, we have observed significant changes in 

runoff generation among inspected landcovers, namely in the representation of direct runoff 

and deeper and slower pathways represented by subsurface lateral and groundwater flows. It 

is necessary to stress that the observed changes in runoff generation processes are results of 

the modelling exercise and it was not observed in the real environment. A brief investigation 

of precipitation patterns preceding the modelling itself revealed no shift in daily precipitation 

totals in the ten-year periods of 1990–2000, 2001-2010, and 2011-2021, and thus climate-

induced changes should not represent a significant contributing factor to the presented results.  

In Central Europe, the non-detectable changes in hydrological regime despite changes in land 

cover were also reported by Bernsteinová et al. (2015) in Šumava Mts. and Wojkowski et al. 

(2022) in Upper Vistula basin. All these changes were only of local importance and they were 

probably dampened on the larger scale of gauging station, which was hypothesized by 

Blöschl et al. (2007). It needs to be stressed that these studies are limited to mountainous 

areas having high precipitation sums and low evapotranspiration. This possibly stands behind 

negligible differences in actual evapotranspiration among particular vegetation covers. We 

hypothesize that the differences in actual evapotranspiration will be larger in lower altitudes 

with more favorable meteorological conditions (Ji et al. 2024), lower amount of deposited 



 

water (influencing the importance of interception) and occurrence of soil water deficits will 

play more important role.  

Experiments aimed at revealing the influence of extreme land cover changes on the local 

hydrology showed that changes from all coniferous forest to transitional woodlands and 

shrubs (including dwarf pine) and vice versa did not cause significant changes in the results 

of the hydrological modelling. The modelled changes affected about 30% of the catchment 

area. Thus, the real changes in the area of land cover classes, which reach a maximum of 12% 

of the study area (corresponding to the change of transitional woodlands between 1991 and 

2005), as well as the accuracy gained, do not have a major impact on the changes in runoff. 

 

5. Conclusion 

This study aimed to quantify land cover change in a mid-latitude mountainous catchment 

over the past 30 years, to represent the catchment water balance using a semi-distributed 

hydrological model, and to assess the influence of time-varying land cover on the 

hydrological response, including afforestation and deforestation scenarios.  

The land cover analysis captured the main patterns of vegetation change, including the 

transition from coniferous forests to transitional woodland-shrub and the gradual increase in 

mixed forests at the expense of grasslands. The influence of disturbance events, such as 

windthrows and bark beetle outbreaks, was evident, especially after 2007. Although finer-

scale structural changes in vegetation could not be fully resolved, the results offered a 

sufficiently robust basis to explore long-term shifts in vegetation cover and their potential 

hydrological implications. 

The hydrological simulations indicated that land cover changes had only a limited impact on 

the overall water balance, while influencing the partitioning between different runoff 

components. The results suggest that the Horní Úpa catchment exhibits a certain resilience to 

land cover variability under current climatic conditions. However, these results are not 

generally applicable, they apply only on the impact of land cover change of mountainous 

forest-dominated catchments. Additionally, the static representation of land cover and soils in 

the SWAT model, together with the fixed delineation of hydrological response units, may 

have constrained the model's sensitivity to more subtle changes in vegetation dynamics. 

Despite these limitations, the study provides an important contribution to the understanding 

of interactions between land cover change and hydrological processes in complex 

mountainous environments. It demonstrates the potential of combining satellite-based land 

cover mapping with process-based hydrological modelling to explore landscape-hydrology 

linkages over long timescales. Future research should focus on integrating higher-resolution 

and temporally dynamic land cover data, improving field-based validation, refining soil and 



 

vegetation parameterization, and employing models capable of capturing dynamic vegetation 

processes. Additionally, we encourage analogous studies in catchments with different 

topography, climate, soil and land cover characteristics. These steps will help to further 

enhance the reliability of hydrological assessments under changing land use and climate 

conditions in sensitive mountain catchments such as the Krkonoše Mountains. 
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